Adelic approximation of generalized integral points Boaz Moerman Utrecht University 29 August 2023 #### Conventions For simplicity, we work over $\mathbb Q$ and $\mathbb Z$, but the results work more generally over number fields and function fields of curves over any field. We denote $\overline{\mathbb N}=\mathbb N\cup\{\infty\}$. In number theory interested in equations mod p^n . In number theory interested in equations mod p^n . Define **valuation** $$v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.$$ In number theory interested in equations mod p^n . Define **valuation** $$v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.$$ We have $p^n|x$ iff $v_p(x) \ge n$. In number theory interested in equations mod p^n . Define **valuation** $$v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.$$ We have $p^n|x$ iff $v_p(x) \ge n$. Induces absolute value $$|a|_p:=p^{-v_p(a)}.$$ In number theory interested in equations mod p^n . Define **valuation** $$v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.$$ We have $p^n|x$ iff $v_p(x) \ge n$. Induces absolute value $$|a|_p:=p^{-v_p(a)}.$$ Complete \mathbb{Q} with $|\cdot|_p$ to get \mathbb{Q}_p , which is a locally compact field. The closure of \mathbb{Z} is the ring $$\mathbb{Z}_p = \{ a \in \mathbb{Q}_p \colon |a|_p \le 1 \}.$$ # Strong approximation By definition, \mathbb{Z} dense in \mathbb{Z}_p , but by the Chinese remainder theorem we even have #### Strong approximation theorem (weak form) The diagonal embedding $$\mathbb{Z}\hookrightarrow\prod_{p \text{ prime}}\mathbb{Z}_p$$ has dense image. Main result generalizes strong approximation in 3 main ways: Main result generalizes strong approximation in 3 main ways: - Generalizing Q to different fields. - 2 Considering different spaces than \mathbb{A}^1 . - **3** Restricting to subsets of \mathbb{Z} . Main result generalizes strong approximation in 3 main ways: - $lacktriang \mathbb{Q}$ to different fields. - 2 Considering different spaces than \mathbb{A}^1 . - **3** Restricting to subsets of \mathbb{Z} . Points 1 & 2 have been studied extensively, but very little is known about point 3. Main result generalizes strong approximation in 3 main ways: - lacktriangledown Generalizing $\mathbb Q$ to different fields. - ② Considering different spaces than \mathbb{A}^1 . - **3** Restricting to subsets of \mathbb{Z} . Points 1 & 2 have been studied extensively, but very little is known about point 3. For simplicity restrict the field to \mathbb{Q} . #### Toric varieties A natural class of varieties for this problem are split toric varieties. These resemble \mathbb{P}^n and have Cox coordinates generalizing the homogeneous coordinates. #### Toric varieties A natural class of varieties for this problem are split toric varieties. These resemble \mathbb{P}^n and have Cox coordinates generalizing the homogeneous coordinates. Examples include: - Products of projective spaces. - ② Hirzebruch surfaces H_d : which are a quotient like $\mathbb{P}^1 \times \mathbb{P}^1$, with instead the relation $$(x_1 : x_2 : x_3 : x_4) = (\lambda x_1 : \mu x_2 : \lambda x_3 : \lambda^d \mu x_4).$$ # Many types of points Let X be a compact variety over $\mathbb Q$ with model $\mathcal X$ over $\mathbb Z$ and choose divisors D_1,\ldots,D_n on X with closure $\mathcal D_1,\ldots,\mathcal D_n$ in $\mathcal X$. There are a lot of special subsets of rational points defined relative to these, # Many types of points Let X be a compact variety over $\mathbb Q$ with model $\mathcal X$ over $\mathbb Z$ and choose divisors D_1,\ldots,D_n on X with closure $\mathcal D_1,\ldots,\mathcal D_n$ in $\mathcal X$. There are a lot of special subsets of rational points defined relative to these, such as - integral points, - Campana points and weak Campana points, - Darmon points etc. # Many types of points Let X be a compact variety over $\mathbb Q$ with model $\mathcal X$ over $\mathbb Z$ and choose divisors D_1,\ldots,D_n on X with closure $\mathcal D_1,\ldots,\mathcal D_n$ in $\mathcal X$. There are a lot of special subsets of rational points defined relative to these, such as - integral points, - Campana points and weak Campana points, - Darmon points etc. We introduce W-points as a common framework for these points. # Multiplicity map For a prime p and $P \in (X \setminus D_i)(\mathbb{Q})$ we define the **multiplicity** at a divisor \mathcal{D}_i as the largest integer $N = n_p(P, \mathcal{D}_i)$ such that $P \mod p^N$ lies in $\mathcal{D}_i(\mathbb{Z}/p^N\mathbb{Z})$. If $P \in D_i(\mathbb{Q})$ we set $n_p(P, \mathcal{D}_i) = \infty$. Using this we define the multiplicity map $$\mathsf{mult}_p \colon X(\mathbb{Q}_p) \to \overline{\mathbb{N}}^n$$ $P \mapsto (n_p(P, \mathcal{D}_1), \dots, n_p(P, \mathcal{D}_n)).$ # \mathcal{W} -points Given $$\mathfrak{W} \subset \overline{\mathbb{N}}^n$$ containing $\{0,\ldots,0\}$ we set $\mathcal{W} = ((\mathcal{D}_1,\ldots,\mathcal{D}_n),\mathfrak{W})$ and we define the set of *p-adic* \mathcal{W} -points as $$(\mathcal{X},\mathcal{W})(\mathbb{Z}_p) = \{P \in X \mid \mathsf{mult}_p(P) \in W\},$$ # \mathcal{W} -points Given $\mathfrak{W} \subset \overline{\mathbb{N}}^n$ containing $\{0,\ldots,0\}$ we set $\mathcal{W} = ((\mathcal{D}_1,\ldots,\mathcal{D}_n),\mathfrak{W})$ and we define the set of *p-adic* \mathcal{W} -points as $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}_p) = \{P \in X \mid \mathsf{mult}_p(P) \in W\},\$$ and the set of $\mathcal{W}\text{-points}$ over \mathbb{Z} as $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \text{ for all primes } p \}.$$ # Multiplicities on toric varieties We take X to be a compact smooth split toric variety. # Multiplicities on toric varieties We take X to be a compact smooth split toric variety. We let D_1, \ldots, D_n be the torus-invariant prime divisors $D_i = \{x_i = 0\}$ (on \mathbb{P}^{n-1} : coordinate hyperplanes). # Multiplicities on toric varieties We can represent a point on a toric variety $X(\mathbb{Q})$ by its Cox coordinates $P=(a_1:\cdots:a_n)$, corresponding to the D_i . By taking the coordinates in \mathbb{Z} in primitive form (for \mathbb{P}^{n-1} this is just $\gcd(a_1,\ldots,a_n)=1$) we have we have $a_i\in\mathbb{Z}$ and $$\operatorname{mult}_p(P) = (v_p(a_1), \dots, v_p(a_n)).$$ • $\mathfrak{W} = \{0\}^k \times \overline{\mathbb{N}}^{n-k}$ gives the integral points with respect to D_1, \dots, D_k : $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = (\mathcal{X} \setminus \cup_{i=1}^k \mathcal{D}_i)(\mathbb{Z})$$ = $\{(\pm 1 : \cdots : \pm 1 : a_{k+1} : \cdots : a_n)\}.$ • $\mathfrak{W} = \{0\}^k \times \overline{\mathbb{N}}^{n-k}$ gives the integral points with respect to D_1, \dots, D_k : $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = (\mathcal{X} \setminus \cup_{i=1}^{k} \mathcal{D}_{i})(\mathbb{Z})$$ = \{(\pm 1 : \cdots : \pm 1 : a_{k+1} : \cdots : a_{n})\}. • $\mathfrak{W} = \{0,1\}^n$ gives "squarefree" points $(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(a_1:\cdots:a_n): a_i \text{ squarefree}\}.$ • $\mathfrak{W} = \{0\}^k \times \overline{\mathbb{N}}^{n-k}$ gives the integral points with respect to D_1, \dots, D_k : $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = (\mathcal{X} \setminus \cup_{i=1}^k \mathcal{D}_i)(\mathbb{Z})$$ = $\{(\pm 1 : \cdots : \pm 1 : a_{k+1} : \cdots : a_n)\}.$ - $\mathfrak{W} = \{0,1\}^n$ gives "squarefree" points $(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(a_1 : \cdots : a_n) : a_i \text{ squarefree}\}.$ - Let $m_1, \ldots, m_n \in \mathbb{N} \{0\}$. - $\mathfrak{W} = \{(w_1, \dots, w_n) \colon m_i | w_i\}$ gives the **Darmon points** $$(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(\pm a_1^{m_1}: \cdots : \pm a_n^{m_n})\}.$$ • $\mathfrak{W} = \{0\}^k \times \overline{\mathbb{N}}^{n-k}$ gives the integral points with respect to D_1, \ldots, D_k : $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = (\mathcal{X} \setminus \cup_{i=1}^k \mathcal{D}_i)(\mathbb{Z})$$ = $\{(\pm 1 : \cdots : \pm 1 : a_{k+1} : \cdots : a_n)\}.$ • $\mathfrak{W} = \{0,1\}^n$ gives "squarefree" points $(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(a_1:\cdots:a_n): a_i \text{ squarefree}\}.$ Let $m_1, \ldots, m_n \in \mathbb{N} - \{0\}$. • $\mathfrak{W} = \{(w_1, \dots, w_n) \colon m_i | w_i\}$ gives the **Darmon points** $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{(\pm a_1^{m_1} : \dots : \pm a_n^{m_n})\}.$ • $\mathfrak{W} = \{(w_1, \dots, w_n) : w_i = 0 \text{ or } w_i \ge m_i\}$ gives the **Campana** points $$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{(a_1 : \cdots : a_n) : a_i \ m_i \text{-full}\}.$$ # W-approximation We say that ${\mathcal X}$ satisfies (integral) ${\mathcal W}$ -approximation if the embedding $$(\mathcal{X},\mathcal{W})(\mathbb{Z})\hookrightarrow\prod_{p \; \mathsf{prime}}(\mathcal{X},\mathcal{W})(\mathbb{Z}_p) imes X(\mathbb{R})$$ has dense image, # W-approximation We say that ${\mathcal X}$ satisfies (integral) ${\mathcal W}$ -approximation if the embedding $$(\mathcal{X},\mathcal{W})(\mathbb{Z})\hookrightarrow\prod_{p \; \mathsf{prime}}(\mathcal{X},\mathcal{W})(\mathbb{Z}_p) imes X(\mathbb{R})$$ has dense image, and say it satisfies (integral) \mathcal{W} -approximation off ∞ if the embedding $$(\mathcal{X},\mathcal{W})(\mathbb{Z}) \hookrightarrow \prod_{p \text{ prime}} (\mathcal{X},\mathcal{W})(\mathbb{Z}_p)$$ has dense image. # W-approximation We say that ${\mathcal X}$ satisfies (integral) ${\mathcal W}$ -approximation if the embedding $$(\mathcal{X},\mathcal{W})(\mathbb{Z})\hookrightarrow\prod_{p \; \mathsf{prime}}(\mathcal{X},\mathcal{W})(\mathbb{Z}_p) imes X(\mathbb{R})$$ has dense image, and say it satisfies (integral) W-approximation off ∞ if the embedding $$(\mathcal{X},\mathcal{W})(\mathbb{Z}) \hookrightarrow \prod_{p \text{ prime}} (\mathcal{X},\mathcal{W})(\mathbb{Z}_p)$$ has dense image. This generalizes strong approximation, which is when $(\mathcal{X},\mathcal{W})(\mathbb{Z})$ are the integral points. When is this satisfied? Consider the fan of X in \mathbb{Z}^d ($d = \dim X$). Then we get a homomorphism $$\phi \colon \mathbb{N}^n \to \mathbb{Z}^d$$ sending $e_i \mapsto u_i$, where u_i is the ray generator associated to D_i . When is this satisfied? Consider the fan of X in \mathbb{Z}^d ($d = \dim X$). Then we get a homomorphism $$\phi \colon \mathbb{N}^n \to \mathbb{Z}^d$$ sending $e_i \mapsto u_i$, where u_i is the ray generator associated to D_i . (For \mathbb{P}^{n-1} we take $u_i = e_i$ if $i \leq n-1$ and $u_n = -\sum_{i=1}^d e_i$.) When is this satisfied? Consider the fan of X in \mathbb{Z}^d ($d = \dim X$). Then we get a homomorphism $$\phi \colon \mathbb{N}^n \to \mathbb{Z}^d$$ sending $e_i \mapsto u_i$, where u_i is the ray generator associated to D_i . (For \mathbb{P}^{n-1} we take $u_i = e_i$ if $i \leq n-1$ and $u_n = -\sum_{i=1}^d e_i$.) Using this map, W generates a submonoid $$N_W^+ \subset \mathbb{Z}^d$$ and a subgroup $$N_W \subset \mathbb{Z}^d$$. #### Theorem (B.M.,2023) - **1** \mathcal{X} satisfies \mathcal{W} -approximation off ∞ if and only if $N_W = \mathbb{Z}^d$, - ② \mathcal{X} satisfies \mathcal{W} -approximation if and only if $N_{\mathcal{W}}^+ = \mathbb{Z}^d$. #### Theorem (B.M.,2023) - **1** \mathcal{X} satisfies \mathcal{W} -approximation off ∞ if and only if $N_W = \mathbb{Z}^d$, - ② \mathcal{X} satisfies \mathcal{W} -approximation if and only if $N_W^+ = \mathbb{Z}^d$. As N_W and N_W^+ are easy to compute, it is easy to decide whether \mathcal{W} -approximation holds. # Implications of the theorem #### Corollary (B.M., 2023) $\ensuremath{\mathcal{X}}$ always satisfies $\ensuremath{\mathcal{W}}\xspace\text{-approximation}$ for Campana points and for squarefree points. # Implications of the theorem ### Corollary (B.M., 2023) $\ensuremath{\mathcal{X}}$ always satisfies $\ensuremath{\mathcal{W}}\xspace\text{-approximation}$ for Campana points and for squarefree points. This generalizes the work of Nakahara-Streeter (2021). ### Corollary Strong approximation holds off ∞ with respect to D_1, \ldots, D_k if and only if $X \setminus \bigcup_{i=1}^k D_i$ is simply connected as a complex manifold. # Implications of the theorem ### Corollary (B.M., 2023) ${\mathcal X}$ always satisfies ${\mathcal W}$ -approximation for Campana points and for squarefree points. This generalizes the work of Nakahara-Streeter (2021). ### Corollary Strong approximation holds off ∞ with respect to D_1,\ldots,D_k if and only if $X\setminus \bigcup_{i=1}^k D_i$ is simply connected as a complex manifold. This comes from the isomorphism $$\mathbb{Z}^d/N_W \cong \pi_1(X \setminus \bigcup_{i=1}^k D_i).$$ ### Corollary (B.M., 2023) W-approximation holds for Darmon points if and only if there are no (nontrivial) finite covers $Y \to X$ ramified only over the D_i with ramification multiplicity $e_i|m_i$ at the D_i . ### Corollary (B.M., 2023) W-approximation holds for Darmon points if and only if there are no (nontrivial) finite covers $Y \to X$ ramified only over the D_i with ramification multiplicity $e_i|m_i$ at the D_i . In particular: if $\gcd(m_i,m_j)=1$ for all $i\neq j$ then \mathcal{W} -approximation holds for Darmon points, and if $X=\mathbb{P}^n$ then the converse also holds. ### Corollary (B.M.,2023) W-approximation holds for Darmon points if and only if there are no (nontrivial) finite covers $Y \to X$ ramified only over the D_i with ramification multiplicity $e_i|m_i$ at the D_i . In particular: if $\gcd(m_i,m_j)=1$ for all $i\neq j$ then \mathcal{W} -approximation holds for Darmon points, and if $X=\mathbb{P}^n$ then the converse also holds. (The above condition is equivalent to the associated root stack being simply connected.) ### Corollary (B.M.,2023) \mathcal{W} -approximation holds for Darmon points if and only if there are no (nontrivial) finite covers $Y \to X$ ramified only over the D_i with ramification multiplicity $e_i|m_i$ at the D_i . In particular: if $\gcd(m_i,m_j)=1$ for all $i\neq j$ then \mathcal{W} -approximation holds for Darmon points, and if $X=\mathbb{P}^n$ then the converse also holds. (The above condition is equivalent to the associated root stack being simply connected.) **Example:** if $X = \mathbb{P}^1$ and $m_1, m_2 = 2$, then \mathcal{X} does not satisfy \mathcal{W} -approximation, as 2 mod 5 is not of the form $\pm a^2 \mod 5$, but $(2:1) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_5)$ as $2 \in \mathbb{Z}_5^{\times}$. If p_1, \ldots, p_r are primes and $P_i = (a_{p_i,1}, \ldots, a_{p_i,n}) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_{p_i})$, we want to find $Q \in (\mathcal{X}, \mathcal{W})(\mathbb{Z})$ approximating each to order p_i^N . If p_1, \ldots, p_r are primes and $P_i = (a_{p_i,1}, \ldots, a_{p_i,n}) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_{p_i})$, we want to find $Q \in (\mathcal{X}, \mathcal{W})(\mathbb{Z})$ approximating each to order p_i^N . Write $$Q'=\prod_{i=1}^r(p^{ extstyle u_{ ho}(a_{ ho_i,1})},\ldots,p^{ extstyle u_{ ho}(a_{ ho_i,n})}).$$ If p_1, \ldots, p_r are primes and $P_i = (a_{p_i,1}, \ldots, a_{p_i,n}) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_{p_i})$, we want to find $Q \in (\mathcal{X}, \mathcal{W})(\mathbb{Z})$ approximating each to order p_i^N . Write $$Q'=\prod_{i=1}^r(p^{ extstyle u_{ ho}(a_{ ho_i,1})},\ldots,p^{ extstyle u_{ ho}(a_{ ho_i,n})}).$$ Then Q' has the right multiplicities for all primes p_i and has multiplicity 0 for all other primes. This shows we can assume all multiplicities are 0. Let $w_1, \dots w_k \in \mathfrak{W}$ generate \mathbb{Z}^d . Then the linear map $\mathbb{Z}^k \to \mathbb{Z}^d$ is surjective, and thus the associated map $$(\mathbb{Z}/p_i^N\mathbb{Z})^k \to (\mathbb{Z}/p_i^N\mathbb{Z})^d$$ is as well. So at each prime p_i we can find a point $Q_i \in \mathcal{X}(\mathbb{Z})$ which satisfies the W-condition at p_i . Let $w_1, \dots w_k \in \mathfrak{W}$ generate \mathbb{Z}^d . Then the linear map $\mathbb{Z}^k \to \mathbb{Z}^d$ is surjective, and thus the associated map $$(\mathbb{Z}/p_i^N\mathbb{Z})^k \to (\mathbb{Z}/p_i^N\mathbb{Z})^d$$ is as well. So at each prime p_i we can find a point $Q_i \in \mathcal{X}(\mathbb{Z})$ which satisfies the \mathcal{W} -condition at p_i . The only obstacle now is to lift these points modulo p_i^N to a \mathcal{W} -point Q over \mathbb{Z} . For all i Dirichlets theorem on arithmetic progressions gives infinitely many primes q_i which are $1 \mod p_j^N$ and have any given residue class $q_i \mod p_i$. We use this to construct Q. ### In general The results transfer verbatim to number fields, and after slight modification also for function fields of curves.