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Conventions

For simplicity, we work over Q and Z, but the results work more
generally over number fields and function fields of curves over any
field. We denote N = N ∪ {∞}.
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The p-adics

In number theory interested in equations mod pn.

Define valuation

vp(p
n · a

b ) := n if p ∤ a, b, vp(0) = ∞.

We have pn|x iff vp(x) ≥ n. Induces absolute value

|a|p := p−vp(a).

Complete Q with | · |p to get Qp, which is a locally compact field.
The closure of Z is the ring

Zp = {a ∈ Qp : |a|p ≤ 1}.
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Strong approximation

By definition, Z dense in Zp, but by the Chinese remainder
theorem we even have

Strong approximation theorem (weak form)

The diagonal embedding

Z ↪→
∏

p prime

Zp

has dense image.
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Generalizations of strong approximation

Main result generalizes strong approximation in 3 main ways:

1 Generalizing Q to different fields.

2 Considering different spaces than A1.

3 Restricting to subsets of Z.
Points 1 & 2 have been studied extensively, but very little is known
about point 3.
For simplicity restrict the field to Q.
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Toric varieties

A natural class of varieties for this problem are split toric varieties.
These resemble Pn and have Cox coordinates generalizing the
homogeneous coordinates.

Examples include:

1 Products of projective spaces.

2 Hirzebruch surfaces Hd : which are a quotient like P1 × P1,
with instead the relation

(x1 : x2 : x3 : x4) = (λx1 : µx2 : λx3 : λ
dµx4).
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Many types of points

Let X be a compact variety over Q with model X over Z and
choose divisors D1, . . . ,Dn on X with closure D1, . . . ,Dn in X .
There are a lot of special subsets of rational points defined relative
to these,

such as

integral points,

Campana points and weak Campana points,

Darmon points etc.

We introduce W -points as a common framework for these points.
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Multiplicity map

For a prime p and P ∈ (X \Di )(Q) we define the multiplicity at a
divisor Di as the largest integer N = np(P,Di ) such that
P mod pN lies in Di (Z/pNZ). If P ∈ Di (Q) we set np(P,Di ) = ∞.
Using this we define the multiplicity map

multp : X (Qp) → Nn

P 7→ (np(P,D1), . . . , np(P,Dn)).
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W-points

Given W ⊂ Nn
containing {0, . . . , 0} we set

W = ((D1, . . . ,Dn),W) and we define the set of p-adic W-points
as

(X ,W)(Zp) = {P ∈ X | multp(P) ∈ W },

and the set of W-points over Z as

(X ,W)(Z) = {P ∈ X | multp(P) ∈ W for all primes p}.
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Multiplicities on toric varieties

We take X to be a compact smooth split toric variety.

We let
D1, . . . ,Dn be the torus-invariant prime divisors Di = {xi = 0}
(on Pn−1: coordinate hyperplanes).
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Multiplicities on toric varieties

We can represent a point on a toric variety X (Q) by its Cox
coordinates P = (a1 : · · · : an), corresponding to the Di . By taking
the coordinates in Z in primitive form (for Pn−1 this is just
gcd(a1, . . . , an) = 1) we have we have ai ∈ Z and

multp(P) = (vp(a1), . . . , vp(an)).
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Examples of W-points

W = {0}k × Nn−k
gives the integral points with respect to

D1, . . . ,Dk :

(X ,W)(Z) = (X \ ∪k
i=1Di )(Z)

= {(±1 : · · · : ±1 : ak+1 : · · · : an)}.

W = {0, 1}n gives ”squarefree” points
(X ,W)(Z) = {(a1 : · · · : an) : ai squarefree}.

Let m1, . . . ,mn ∈ N− {0}.
W = {(w1, . . . ,wn) : mi |wi} gives the Darmon points

(X ,W)(Z) = {(±am1
1 : · · · : ±amn

n )}.

W = {(w1, . . . ,wn) : wi = 0 or wi ≥ mi} gives the Campana
points

(X ,W)(Z) = {(a1 : · · · : an) : ai mi -full}.
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W-approximation

We say that X satisfies (integral) W-approximation if the
embedding

(X ,W)(Z) ↪→
∏

p prime

(X ,W)(Zp)× X (R)

has dense image,

and say it satisfies (integral) W-approximation off ∞ if the
embedding

(X ,W)(Z) ↪→
∏

p prime

(X ,W)(Zp)

has dense image. This generalizes strong approximation, which is
when (X ,W)(Z) are the integral points.
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W-approximation for toric varieties

When is this satisfied? Consider the fan of X in Zd (d = dimX ).
Then we get a homomorphism

ϕ : Nn → Zd

sending ei 7→ ui , where ui is the ray generator associated to Di .

(For Pn−1 we take ui = ei if i ≤ n− 1 and un = −
∑d

i=1 ei .) Using
this map, W generates a submonoid

N+
W ⊂ Zd

and a subgroup
NW ⊂ Zd .
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W-approximation for toric varieties

Theorem (B.M.,2023)

1 X satisfies W-approximation off ∞ if and only if NW = Zd ,

2 X satisfies W-approximation if and only if N+
W = Zd .

As NW and N+
W are easy to compute, it is easy to decide whether

W-approximation holds.
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Implications of the theorem

Corollary (B.M.,2023)

X always satisfies W-approximation for Campana points and for
squarefree points.

This generalizes the work of Nakahara-Streeter (2021).

Corollary

Strong approximation holds off ∞ with respect to D1, . . . ,Dk if
and only if X \ ∪k

i=1Di is simply connected as a complex manifold.
This comes from the isomorphism

Zd/NW
∼= π1(X \ ∪k

i=1Di ).
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Corollary (B.M.,2023)

W-approximation holds for Darmon points if and only if there are
no (nontrivial) finite covers Y → X ramified only over the Di with
ramification multiplicity ei |mi at the Di .

In particular: if gcd(mi ,mj) = 1 for all i ̸= j then
W-approximation holds for Darmon points, and if X = Pn then the
converse also holds. (The above condition is equivalent to the
associated root stack being simply connected.)

Example: if X = P1 and m1,m2 = 2, then X does not satisfy
W-approximation, as 2 mod 5 is not of the form ±a2 mod 5, but
(2 : 1) ∈ (X ,W)(Z5) as 2 ∈ Z×

5 .
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Proof sketch for projective space

If p1, . . . , pr are primes and Pi = (api ,1, . . . , api ,n) ∈ (X ,W)(Zpi ),
we want to find Q ∈ (X ,W)(Z) approximating each to order pNi .

Write

Q ′ =
r∏

i=1

(pvp(api ,1), . . . , pvp(api ,n)).

Then Q ′ has the right multiplicities for all primes pi and has
multiplicity 0 for all other primes. This shows we can assume all
multiplicities are 0.
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Proof sketch for projective space

Let w1, . . .wk ∈ W generate Zd . Then the linear map Zk → Zd is
surjective, and thus the associated map

(Z/pNi Z)k → (Z/pNi Z)d

is as well. So at each prime pi we can find a point Qi ∈ X (Z)
which satisfies the W-condition at pi .

The only obstacle now is to
lift these points modulo pNi to a W-point Q over Z. For all i
Dirichlets theorem on arithmetic progressions gives infinitely many
primes qi which are 1 mod pNj and have any given residue class
qi mod pi . We use this to construct Q.
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In general

The results transfer verbatim to number fields, and after slight
modification also for function fields of curves.
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