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Introduction
In number theory and arithmetic geometry, one of the main topics is
the study of homogeneous Diophantine equations. These are systems
of equations

f1(X1, . . . , Xn) = ⋅ ⋅ ⋅ = fk(X1, . . . , Xn) = 0,

where the functions f1, . . . , fk are homogeneous polynomials with
integer coefficients in variables X1, . . . , Xn. For example,

X2 + Y 2 −Z2 = 0

is the equation describing a cone in R3. A central goal is to describe
the integer solutions of such equations. In particular, how many such
solutions exist and how common are they? In the example of the
circle given, there are infinitely many solutions (X, Y, Z) = (a, b, c) ∈
Z3 given by Pythagorean triples. A classical result by Lehmer [1]
states that the number of such solutions with gcd(a, b, c) = 1 and
max(∣a∣, ∣b∣, ∣c∣) ≤ B is asymptotic to 4

πB.
By viewing such solutions as rational points on the projective va-
riety determined by the equations, we can use tools from algebraic
geometry to determine how common solutions to Diophantine equa-
tions are. In particular, if the variety determined by the Diophantine
equation is Fano, then Manin’s conjecture [2] gives a precise predic-
tion for the number of solutions of bounded height. We extend this
conjecture to a broad class of special solutions of Diophantine equa-
tions, such as squarefree solutions, coprime solutions, and squareful
solutions. We then show that this extension is true for split toric
varieties, such as projective space.

Projective space and toric varieties

In geometry, projective space is a foundational object of study. The
rational points on the projective space Pn−1 can be described using
homogeneous coordinates: they are the points

(a1 ∶ ⋅ ⋅ ⋅ ∶ an),

such that a1, . . . , an ∈ Z and gcd(a1, . . . , an) = 1. A natural exten-
sion of projective space is given by the class of smooth (split) toric
varieties. These include products of projective spaces such as the
quadric

P1 × P1 ≅ {XY −ZW = 0} ⊂ P3,

as well as projective space blown up at a point. Toric varieties have
Cox coordinates, which generalizes homogeneous coordinates. Us-
ing these coordinates, rational points on split toric varieties have
a similar description, but with a different gcd condition. For ex-
ample, on P1 × P1, the Cox coordinates for a rational point are
of the form (a1 ∶ a2 ∶ a3 ∶ a4), for integers a1, a2, a3, a4 satisfying
gcd(a1, a2) = gcd(a3, a4) = 1.

M-points on toric varieties

Now we introduce special subsets of the rational points on the toric
variety X . For a rational point Q = (a1 ∶ ⋅ ⋅ ⋅ ∶ an) (with nonzero
coordinates) and a prime p, we can take out the factors of p to get

(a1 ∶ ⋅ ⋅ ⋅ ∶ an) = (p
m1u1 ∶ ⋅ ⋅ ⋅ ∶ p

mnun),

where p does not divide u1, . . . , un. We define the multiplicity of
Q at p to be

multp(Q) = (m1, . . . , mn).

Let M ⊂ Nn be a subset containing (0, . . . , 0). Then a rational point
Q ∈ X(Q) is an M-point if multp(Q) ∈ M for all prime numbers
p. We denote the set of M -points on X by (X, M)(Z).

Examples of M-points

By varying M , we can describe several arithmetically interest-
ing sets of points. For instance:
● M = Nt × {0}n−t gives
(X, M)(Z) = {(a1 ∶ ⋅ ⋅ ⋅ ∶ at ∶ ±1 ∶ ⋅ ⋅ ⋅ ∶ ±1)∶ai ∈ Z ∖ {0}}.
● M = {0, 1}n gives
(X, M)(Z) = {(a1 ∶ ⋅ ⋅ ⋅ ∶ an)∶ai is squarefree}.

If we fix a tuple of positive integers m = (m1, . . . , mn), then
● If M = {(w1, . . . , wn)∶mi∣wi}, then

(X, M)(Z) = {(±am0
1 ∶ ⋅ ⋅ ⋅ ∶ ±a

mn
n )∶ai ∈ Z ∖ {0}}

are the Darmon points for m.
● If M = {(w1, . . . , wn)∶wi = 0 or wi ≥mi}, then

(X, M)(Z) = {(a1 ∶ ⋅ ⋅ ⋅ ∶ an)∶ai is mi-full}

are the Campana points for m. An integer a is said to
be m-full if for every prime number dividing a, pm also
divides a.
● If M = {(w1, . . . , wn)∶∑

n
i=1

wi

mi
≥ 1} ∪ {(0 ∶ ⋅ ⋅ ⋅ ∶ 0)}, then

(X, M)(Z) are the weak Campana points of m. Of
particular note is when m1 = ⋅ ⋅ ⋅ =mn =m for some integer
m. In this case

(X, M)(Z) = {(a1 ∶ ⋅ ⋅ ⋅ ∶ an)∶
n

∏
i=1

ai ≠ 0 is m-full} .

Heights on varieties

We want to be able to quantify how common M -points are. For this
we use the height. Let Q = (a1 ∶ ⋅ ⋅ ⋅ ∶ an) be a point on projective
space. The height of Q is defined as

H(Q) = max(∣a1∣, . . . , ∣an∣).

If X is a variety with a given embedding into projective space, then
we can restrict the height to X to get a height

H ∶X(Q) → R>0.

M-points of bounded height

For a smooth split toric variety X with a given embedding into
projective space, and a set M ⊂ Nn, we define the counting function

N(X,M)(B) ∶= {Q ∈ (X, M)(Z) ∣H(Q) ≤ B}

for all real numbers B. Our main result is the following.

Theorem (M. 2025)[3]

Let X and M be as above, and assume that
there exist positive integers d1, . . . , dn such that
(d1, 0, . . . , 0), (0, d2, 0, . . . , 0), . . . , (0, . . . , 0, dn) ∈ M . Then
there exist positive real numbers a, b, θ such that

N(X,M)(B) = Ba (Q(log B) +O (B−θ))

as B → ∞, where Q is a polynomial of degree b − 1. The
numbers a and b are explicit with a geometric interpretation.
Furthermore, under mild hypotheses, the leading coefficient of
Q is explicitly computed.

This generalizes results on Campana points by Pieropan and
Schindler [4], which in turn generalizes results by Salberger on ra-
tional points [5]. These results are the first results on M -points of
bounded height outside Campana and Darmon points.

The constants a and b

Let ΓM ⊂ Nn be the finite set of minimal elements of M (with respect
to the partial order on Nn), and define the group of (torus-invariant)
divisors on X and (X, M):

DivT(X) =
n

⊕
i=1

Z[Di], DivT(X, M) = ⊕
m∈ΓM

Z[D̃m],

where Di ⊂X is the zero locus of the i-th coordinate and D̃m is just
a symbol. Consider the pullback homomorphism

pr∗∶DivT(X) → DivT(X, M)

Di ↦ ∑
m∈ΓM

miD̃m.

Let Pic(X, M) = Div(X, M)/pr∗{principal divisors on X} be the
Picard group of (X, M) and let K(X,M) = −∑m∈ΓM

D̃m be the
Canonical divisor of (X, M). On projective space, a divisor
∑

n
i=1 aiDi is principal exactly when ∑n

i=1 ai = 0. In the vector space
Pic(X, M) ⊗R, the effective cone Eff(X, M) is the cone generated
by the elements D̃m for m ∈ ΓM . Using the effective cone and the
canonical divisor, we can determine a and b. The embedding of X
in projective space comes from a divisor L ∈ Div(X) (for projective
space, this is simply Di). Now

a = min{t ∈ R ∣ t pr∗L +K(X,M) ∈ Eff(X, M)}

and b is the codimension of the minimal face of Eff(X, M) containing
a pr∗L +K(X,M).

Explicit examples

In many cases, the constants a, b are easy to compute.

Corollary

Let X = Pn−1 and assume (m1, 0, . . . , 0), . . . , (0, . . . , 0, mn) ∈

M for positive integers m1, . . . , mn and suppose ∑n
i=1

wi

mi
≥ 1 for

all nonzero w ∈M . Then

a =
n

∑
i=1

1
mi

, b = #{(w1, . . . , wn) ∈M ∣
n

∑
i=1

wi

mi
= 1} − n + 1.

The hypothesis in the corollary is satisfied for Darmon points and
(weak) Campana points. In particular,
● For Darmon and Campana points we have b = 1, so there is no

logarithmic factor appearing for such points on projective space.
● For weak Campana points with m1 = ⋅ ⋅ ⋅ =mn =m, we have

b = (
m + n − 1

n − 1
) − (

m − 1
n − 1

) − n + 1.

As an example, if we consider weak Campana points on the projective
plane P2 with m1 =m2 =m3 = 2, the theorem implies

{(a ∶ b ∶ c) ∈ P2(Q) ∣ abc ≠ 0 is squareful, H(a ∶ b ∶ c) ≤ B}

= B3/2(Q(log B) +O(B−θ)),

where Q is a cubic polynomial with leading coefficient

∏
p prime

(1 − p−1)
6⎛
⎜
⎝

1 − p−3/2

(1 − p−1/2)
3 − 3p−1/2

⎞
⎟
⎠
≈ 0.862.

M-points on other varieties

While we focused on toric varieties over the rational numbers in this
poster, it is possible to study M -points on other varieties and over
number fields. For pairs (X, M) which are “rationally connected”, I
have formulated a conjecture for the number of M -points of bounded
height, which generalizes Manin’s conjecture as well as the theorem
presented here.
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