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1. Introduction

In number theory, one of the main topics is the study of Diophantine equations: sys-
tems of polynomial equations with integer coefficients. A central goal is to describe the
integer and rational solutions of such equations. This leads to several basic questions,
such as:

1. Are there any solutions?

2. Is the set of solutions infinite?

3. When can solutions of the equations modulo a prime number p be lifted to
integer solutions?

Over the decades, algebraic geometry has shown to be a very powerful tool in studying
such questions. The system of equations defines an algebraic variety, and the integer
solutions correspond to integral or rational points on the variety. By studying the
geometry of this variety, much information is obtained on the solutions, and this
has lead to the field of Diophantine geometry and the broader field of arithmetic
geometry. This philosophy was captured beautifully by Hindry and Silverman in the
introduction of [HS00] by the slogan

Geometry Determines Arithmetic

This approach to Diophantine equations has proven to be very successful, and has
led to important results such as the Mordell-Weil Theorem [Wei28], the proof of the
Mordell Conjecture by Faltings [Fal83] and the Modularity Theorem [BCD+01].

In number theory, there is also a significant interest in special solutions of Dio-
phantine equations, such as squarefree solutions, coprime solutions, and squareful
solutions. The study of squarefree values of polynomials is an active research area,
see for example [Hoo67; Fil92; Poo03; SW23]. Squareful numbers have also been
extensively studied, such as in [ES34; Hea90; ZW12; Van12]. In this thesis, we set
up a general geometric framework for studying special solutions of Diophantine equa-
tions, which we call M-points. This allows us to apply the methods and language of
arithmetic geometry to understand such solutions.

1.0.1 Campana points and related notions

The framework of M-points subsumes the theory of Campana points. The theory of
Campana points allows for a geometric study of squareful, and more generally m-full,
solutions of Diophantine equations. Here we recall that an integer n is m-full if for
every prime number p dividing n, pm also divides n. Campana points can be viewed
as integral points on a variety with respect to a weighted boundary divisor.

1



2 1. Introduction

In recent years, Campana points have attracted a significant amount of attention,
as many results and conjectures concerning rational points extend to Campana points.
One such example is the Mordell Conjecture [Fal83], whose analogue for Campana
points has been introduced by Campana [Cam05] and which was proven over function
fields of characteristic 0 by him [Cam05] and proven recently in [KPS22] in positive
characteristic. Over number fields the conjecture is implied by the abc Conjecture, see
[Sme17, Appendix] for example. Recently in [BJ24] it was shown that the Kobayashi–
Ochiai Theorem generalizes to Campana pairs, giving a higher dimensional analog of
the Mordell Conjecture for the theory of Campana points over function fields. This
result has found uses in proving scarcity of rational points on some surfaces [Sme17;
KPS22] and certain threefolds [BJR24]. Campana points have also been used to show
that the weakly special conjecture of Harris and Tschinkel [HT00] contradicts the
abc-Conjecture [BCJ+24].

Similarly, recently a generalization of Manin’s conjecture on rational points of
bounded height to the setting of Campana points has been introduced in [PSTVA21].
This conjecture is known for several varieties with appropriately chosen boundary di-
visor, such as diagonal hypersurfaces [Van12; BY21; Shu21; Shu22; BBK+24], vector
group compactifications [PSTVA21], norm forms [Str22], biequivariant compactifi-
cations of the Heisenberg group [Xia22] and wonderful compactifications [CLT+25].
Furthermore, for the log-anticanonical height, this conjecture has been proven for com-
plete toric varieties [PS24a; SS24] and certain complete intersections therein [PS24b].
In [Fai23; Fai25], a motivic analogue of Manin’s conjecture for Campana points is
proven for vector group compactifications and toric varieties.

Several other related types of rational points have been studied as well, such as
Darmon points. For a Diophantine equation, the solutions of the equation by powers
of integers (up to units) is a set of Darmon points. This terminology was coined
in [MNS24], honoring Darmon’s study of M-curves [Dar97]. In that paper, Darmon
unconditionally proves the analog of the Mordell Conjecture for Darmon points over
number fields and uses it to prove that generalized Fermat equations have finitely
many solutions. Darmon points also appear in Campana’s work as morphismes orb-
ifoldes divisibles [Cam11a, Définition 2.4]. Darmon points are intrinsically connected
to orbifolds through the root stack construction given in [Cad07], as we will explain
in Section 3.5.

In other works [AV18; Str22] another variant of Campana points called weak
Campana points is used in the study of analogues of the conjectures of Vojta [Voj87]
and Manin [Pey95] on rational points.

1.0.2 M-points

The notion of M-points vastly generalizes integral points, (weak) Campana points
and Darmon points and provides a common framework for studying these notions.
To define such points, one needs to fix an integral model of the variety. Here the
parameter set M encodes the boundary components on the integral model and the
admissible intersection multiplicities, and the letter M was chosen in reference to
the latter. The precise definition is given in Section 2.1.1. For example, in An

Z, for
suitable choices of the parameter set M, M-points can describe points with integer
coordinates that are squarefree, all cubes, or all coprime. On the geometric side, M-
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points can describe tuples of polynomials that are squarefree, have no simple zeroes,
or are coprime. Many more examples are given in Section 2.1.4.

The main goal of this thesis is to study the following question: “How areM-points
distributed on a variety?”

There are different ways in which this question can be understood. In this thesis,
we study two precise questions regarding M-points:

� When does the set ofM-points satisfy M -approximation, the natural analogue
of strong approximation?

� What is the number of M-points of bounded height?

We study the first question in Chapter 2 and in Chapter 3, and the second question in
Chapter 4 and Chapter 5. In both cases, we first set up general definitions and general
results for M-points, and afterwards focus on M-points on split toric varieties.

Chapter 4 and Chapter 5 can be read independently from most of Chapter 2 and
Chapter 3. More specifically, Chapter 4 only depends on the definition of pairs and
M-points introduced in Section 2.1 as well as the examples given in Section 2.1.4,
while Chapter 5 additionally requires Cox coordinates and toric pairs as introduced
in Section 3.1.

1.1 M-approximation

1.1.1 Weak and strong approximation

In number theory and algebraic geometry, the study of weak and strong approxima-
tion on algebraic varieties is an enduring area of research. These two properties are
intimately related to the following question: given a system of polynomial equations

{f1 = · · · = fn = 0}

with integer coefficients, does every solution of these equations in Z/nZ lift to a
solution over Z? Such a lift exists as long as the variety defined by these equations
satisfies strong approximation off the infinite place. If the variety X satisfies weak
approximation off the infinite place, then every solution in Z/nZ can be lifted to a
nonzero solution of

{F1 = · · · = Fn = 0},

over Z, where Fi is the homogenisation of the polynomial fi.
Both weak and strong approximation serve as a natural extension of the Chi-

nese Remainder Theorem. Using the language of the p-adic numbers, the Chinese
Remainder Theorem is equivalent to the statement that

Z→
∏

p prime

Zp

has dense image. Strong approximation and weak approximation can both be for-
mulated in a similar way. Let K be a number field or a function field of a curve,



4 1. Introduction

and write ΩK for the set of places of K. Then a variety X over K satisfies weak
approximation if the natural embedding

X(K) ↪→
∏

v∈ΩK

X(Kv)

has dense image, where Kv is the completion of K with respect to the place v. In other
words, X satisfies weak approximation if, for every finite collection S of places of K
with chosen points Pv ∈ X(Kv) for all v ∈ S, there exists a rational point P ∈ X(K)
approximating all Pv arbitrarily well. The variety X satisfies strong approximation
if the rational point P can be chosen to be integral with respect to all places outside
of S. For a precise description of weak and strong approximation, see Section 2.2.2.

Strong approximation was first studied by Eichler in [Eic38], where he stud-
ied the property for certain algebraic groups over number fields. In the 60’s and
70’s, his results were extended to all semisimple simply-connected algebraic groups
[Kne66; Pla69; Mar77; Pra77]. Much more recently, other types of varieties have
been shown to satisfy strong approximation (with Brauer-Manin obstruction), such
as certain quadrics [BC08], toric varieties [WX12; CX18b; Wei21; San23a; Che24],
certain quadratic fibrations [Xu15], certain homogeneous spaces [BD13; CH16; Col18;
Dem22], certain affine hypersurfaces [DW17], groupic varieties [Cao18; CX18a] and
certain complete intersections [CZ18]. There is also an extensive literature on weak
approximation (with Brauer-Manin obstruction) for the aforementioned types of vari-
eties [CSS87; CS89; Har95; Ski97; CL14; Luc14], as well as for certain abelian varieties
[Wan96], certain del Pezzo surfaces [Vár08] and Châtelet surfaces [NR24]. Rationally
connected varieties over a function field of a complex curve have been shown to satisfy
weak approximation away from places of bad reduction [HT06].

1.1.2 M-approximation

As with integrality, the M-condition is a local condition, so local-global principles
such as strong approximation have natural analogues for M-points. In Section 2.2.2
of Chapter 2, we introduce M -approximation and integral M-approximation, which
generalizes and interpolates between weak approximation and (integral) strong ap-
proximation. Here M encodes the boundary components on the variety and the same
intersection multiplicities as M. The precise definition is given in Section 2.1.1. A
variety X satisfies M -approximation if, roughly speaking, for every finite set of places
S ⊂ ΩK and points Pv ∈ X(Kv) for v ∈ S, there exists P ∈ X(K) approximating
all Pv, such that for every place v ∈ ΩK \ S, P satisfies the M-condition at the
place v. This is formalized in terms of density of rational points in an appropriate
adelic space, introduced in Definition 2.2.1. Similarly to strong approximation, this
property is independent of the choice of the integral model.

Integral M-approximation is a variant on this notion obtained by letting Pv ∈
X(Kv) be a local M-point and requiring P ∈ X(K) to be an M-point. Under
very mild conditions, M -approximation implies integral M-approximation, see Sec-
tion 2.2.2 and Proposition 3.2.20.

Integral M-approximation extends the notion of weak Campana approximation
which was introduced by Nakahara and Streeter in [NS24] and further studied in
[NS24; CLT24]. However, M -approximation behaves very differently from the notion
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of Campana strong approximation as given in their follow up paper with Mitankin
[MNS24]. Their notion of Campana strong approximation interpolates between strong
approximation and integral strong approximation, rather than weak approximation.

1.1.3 M-approximation and the M-Hilbert property

If X is an integral variety over a field K, then a subset A ⊂ X(K) is thin if it
is contained in a finite union of proper closed subvarieties and images of the set of
rational points under generically finite maps Y → X of degree greater than 1, where
Y is an integral variety. In positive characteristic this is less strict than the usual
definition as given in [BFP14; Lug22], see Remark 2.2.17.

The fields considered in this thesis are PF fields (K,C). Here K is either a number
field or the function field of a regular projective curve C over some field k. If K is a
number field then C = SpecOK where OK is the ring of integers. Such fields have
a good notion of places, as explained in Section 1.3.4, and therefore allow for the
study of local-global principles, which has been done previously in [Yam96; Yam02].
The terminology ‘PF fields’ is explained by the fact that such fields satisfy a product
formula, see Remark 1.3.4.

Let X be a proper variety over a PF field (K,C). Let B ⊂ C be an open sub-
scheme. As is the case for integral points, we consider integral models over B in order
to define M-points over B in X(K). If M is a parameter set defined by boundary
components Dα and a set of admissible multiplicities M as in Definition 2.1.1, then
we can consider an proper integral model X over B with parameter set M obtained
by taking proper integral models Dα ⊂ X of the boundary components. We then
call (X,M) a pair and (X ,M) an integral model of (X,M) over B and write the
set of M-points as (X ,M)(B). In the literature on Campana points, the boundary
components Dα are divisors. We do not impose this restriction however, and allow
the components Dα to be arbitrary closed subschemes.

The first theorem shows that integral M-approximation implies that the set of
M-points is Zariski dense, unless this set is empty. If K is a global field it also shows
that the set of M-points is not thin.

Theorem 1.1.1. Let (X,M) be a pair over a PF field (K,C) with integral model
(X ,M) over an open subscheme B ⊂ C. Assume that X is a geometrically reduced
variety and that Dα does not contain an irreducible component of X for any α ∈ A.

If (X ,M) satisfies integralM-approximation off a finite set of places T ⊂ ΩK and
(X ,M)(B) ̸= ∅, then X is geometrically integral and (X ,M)(B) is Zariski dense. If
furthermore K is a global field then (X ,M) satisfies theM-Hilbert property over B,
i.e., (X ,M)(B) is not thin in X(K).

This theorem is a generalisation toM-points of a result of Nakahara and Streeter
[NS24, Theorem 1.1] which shows that weak weak Campana approximation implies
the Campana Hilbert property. Their result is in turn a generalisation of a theorem
of Colliot-Thélène and Ekedahl [Ser08, Theorem 3.5.7], which states that weak weak
approximation implies the Hilbert property. Theorem 1.1.1 also generalizes all of
these results from number fields to global fields, and removes the assumption that
the variety is normal or even integral. Furthermore, the theorem even extends to
function fields of curves over infinite fields, albeit with a weaker conclusion. The
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stronger conclusion obtained for global fields does not need to hold for such function
fields, as shown in Corollary 3.3.11. This corollary shows that, for a function field
K of a curve over an algebraically closed field, integral M-approximation need not
imply theM-Hilbert property. In particular, this gives the first examples of varieties
which satisfy strong approximation, but for which the set of integral points is both
Zariski dense and thin.

If the field K is a number field and X is geometrically irreducible, then the proof
of Theorem 1.1.1 closely follows the proof of Nakahara and Streeter. The main idea is
to use the Lang–Weil bounds [LW54] to show that, for a generically finite morphism
Y → X of degree greater than 1, the image of Y (Kv) in X(Kv) is too small to contain
(X ,M)(Ov). For global function fields, the proof is similar but more complicated,
due to the existence of inseparable morphisms Y → X. For these morphisms, we
cannot apply the Lang–Weil bounds, and instead we prove and use Lemma 2.2.19,
which implies that the image of Y (Kv)→ X(Kv) is nowhere dense if X is smooth.

For function fields of curves over infinite fields, the main difficulty in proving
Zariski density of (X ,M)(B) is that we do not know whether X(Kv) contains a
smooth point for some place v. We show this by invoking recent results by Moret-
Bailly on rational points in fibres [Mor20] and combining this with Hensel’s Lemma.

Remark 1.1.2. The assumption that X is geometrically reduced is necessary for the
conclusion of Theorem 1.1.1 to hold. Example 2.2.20 gives an example of an integral
curve such that X(Kv) = X(K) consists of a single point for every place v, so that
X satisfies weak approximation but X(K) is not Zariski dense in X.

1.1.4 M-approximation for split toric varieties

In Chapter 3, we focus on studying M -approximation for split toric varieties X.
More specifically, we consider pairs (X,M) where the boundary components used in
defining M are the torus-invariant prime divisors D1, . . . , Dn. We will call such a pair
(X,M) a toric pair. In this setting we give a necessary and sufficient criterion for
M -approximation to hold off a given set of places T . To state the theorem, we will
need the set

ρ(K,C) =

{
n ∈ N∗ | O×

v

(·)n−−→ O×
v is surjective for all v ∈ ΩK

}
.

An integer n lies in this set if for every v ∈ ΩK , every unit in Ov admits an n-th root.
This set has not been studied before to the author’s knowledge. This set is explicitly
computed in Lemma 3.2.12. In particular, ρ(K,C) = {1} if K is a global field, and
ρ(K,C) = N \ char(K)N if K is the function field of a curve over a separably closed
field.

Theorem 1.1.3. Let (K,C) be a PF field and let (X,M) be a toric pair where X is
a normal complete split toric variety over K with co-character lattice N . Let T ⊂ ΩK

be a nonempty finite set of places and let NM , N
+
M ⊂ N be the lattice and the monoid

as in Definition 3.2.2 and Definition 3.2.6. Then

1. (X,M) satisfies M -approximation off T if |N : NM | ∈ ρ(K,C). If Pic(C) is
finitely generated, then the converse also holds.
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2. Furthermore, (X,M) satisfies M -approximation if and only if N = N+
M .

This considerably generalizes Nakahara’s and Streeter’s result [NS24, Theorem
1.2(i)] from projective space to general split toric varieties, from Campana points to
M-points and from number fields to PF fields.

The proof of Nakahara and Streeter does not extend to the setting of M-points,
as their proof essentially uses the fact that for any two S-integers a, b such that b
divides a, the integer amb is m-full for any positive integer m. Since we consider
sets (X ,M)(B) of points which can greatly differ from Campana points and can have
much less structure, our proof of Theorem 1.1.3 takes a different approach. The proof
is subdivided in two steps. First in Section 3.2.2 we prove results on the density of
squarefree elements in rings of integers and on affine curves, which can be thought of
as “squarefree strong approximation” on the affine line. Then we use Cox coordinates
as introduced in [Cox95] to extend the results from the affine line to toric varieties.

Remark 1.1.4. The condition that Pic(C) is finitely generated is satisfied in many
cases, such as when C is rational or when K is finitely generated over its prime field.
The latter follows from Néron’s generalisation of the Mordell-Weil Theorem [Con06,
Corollary 7.2].

Remark 1.1.5. Note that M -approximation off a nonempty set of places only de-
pends on the lattice NM rather than on (X,M). This can be viewed as an analogue
of purity of strong approximation as in [CLX19; CH20; Wei21; Che24]. In fact,
this theorem shows that purity holds for strong approximation with respect to toric
subvarieties.

By a classical theorem of Minchev [Min89, Theorem 1], of which we give a new
proof in Corollary 2.2.21, a variety over a number field can only satisfy strong ap-
proximation off a finite set of places T if it is algebraically simply connected. The
following consequence of Theorem 1.1.3 implies that, for split toric varieties, these
two properties are actually equivalent.

Corollary 1.1.6. Let (K,C) be a PF field of characteristic 0, let K be an algebraic
closure of K, let X be a complete normal split toric variety over K and let V ⊆ X be
an open toric subvariety. Then:

1. For any nonempty finite set of places T , V satisfies strong approximation off T
if π1(VK) is finite and |π1(VK)| ∈ ρ(K,C). If Pic(C) is finitely generated, then
the converse also holds.

2. The variety V satisfies strong approximation if and only if VK is simply con-
nected and O(VK) = K.

Remark 1.1.7. If ρ(K,C) = 1, then the first part of Corollary 1.1.6 states that for
any nonempty set of places T , V satisfies strong approximation off T if and only if
V is simply connected. On the other hand, if ρ(K,C) = N∗ then V satisfies strong
approximation off T if and only if its fundamental group is finite, or equivalently if
and only if V does not have torus factors by [CLS11, Exercise 12.1.6].

In Section 3.4, we give two more characterisations of strong approximation on
split toric varieties. Corollary 3.4.2 characterizes strong approximation in terms of
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the Picard group and is valid over any PF field. Corollary 3.4.4 implies that, over a
number field, a smooth split toric variety satisfies strong approximation off a finite
nonempty set of places if and only if the Brauer group modulo its constants vanishes.
This strengthens the results of Cao and Xu in [CX18b] on strong approximation with
Brauer-Manin obstruction for toric varieties over number fields when the toric variety
is split toric. We strengthen their results by taking infinite places into consideration
and we allow the ground field to be a function field. A similar result has recently
also been shown over number fields by Santens in [San23a, Theorem 1.3], which
implies that the algebraic Brauer-Manin obstruction is the only obstruction to strong
approximation if every regular function on the variety VK is constant.

By applying Theorem 1.1.3 to Campana points as defined in Definition 2.1.19, we
obtain the following generalization of [NS24, Theorem 1.2(i)]:

Corollary 1.1.8. Let (K,C) be a PF field, let X be a complete normal split toric
variety and let T ⊂ ΩK be a finite set of places. Let (X,M) be the toric pair corre-
sponding to the Campana points on (X,Dm) as defined in Definition 2.1.19, where
m = (m1, . . . ,mn) ∈ (N∗ ∪ {∞})n and

Dm =

n∑
i=1

(
1− 1

mi

)
Di.

Then (X,M) satisfies M -approximation off T if X \ ⌊Dm⌋ satisfies the conditions
for strong approximation given in Corollary 1.1.6 or Corollary 3.4.2. If furthermore
Pic(C) is finitely generated or T = ∅, then the converse also holds. In particular, X
satisfies M -approximation if mi <∞ for all i = 1, . . . , n.

The special case of Corollary 1.1.8 where (K,C) is the function field of a curve
over an algebraically closed field of characteristic 0 has been proven independently
in a recent work by Chen, Lehmann and Tanimoto [CLT24], under the additional
assumption that mi < ∞ for all i = 1, . . . , n. They also obtain analogues of this
result for other Campana pairs (X,Dm) which are “Campana rationally connected”.
The method they use relies on logarithmic geometry, and differs from the approach
taken in this thesis.

We also study failures of theM-Hilbert property on split toric varieties. The main
result in this direction is Theorem 3.3.5, which gives general sufficient conditions for
theM-Hilbert property to fail, and gives a measure of how badly it fails. It also gives
a precise characterisation for Zariski density of the set ofM-points. As a consequence
of the theorem it follows that over global fields, M -approximation is equivalent to the
M-Hilbert property.

Corollary 1.1.9. Let (K,C) be a global field, let B ⊂ C be a nonempty open set and
set T = ΩK \B. Let (X,M) be a toric pair where X is a normal complete split toric
variety over K with toric integral model (X ,M) over B. Then (X,M) satisfies M -
approximation off T if and only if theM-Hilbert property over B is satisfied, meaning
that (X ,M)(B) is not thin.

If T ̸= ∅, then the same holds for any integral model (X ,M) over B such that
(X ,M)(B) ̸= ∅.
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1.1.5 Darmon points and root stacks

In the final section on M -approximation, we elucidate the relation between Darmon
points and root stacks, and we relate the conditions in Theorem 1.1.3 to the funda-
mental group of the associated root stack. Proposition 3.5.2 shows that outside of
the boundary, integral points on the root stack (X , m

√
D) are the same as Darmon

points on X . We also prove in Proposition 3.5.5 that the pair (X,M) corresponding to
the Darmon points satisfies M -approximation if and only if the root stack (X, m

√
D)

satisfies strong approximation, as studied in [Chr20; San23b].
In Lemma 3.5.8 we compute the étale fundamental group of a toric root stack, and

show that it coincides with the profinite completion of the group N/NM considered in
Theorem 1.1.3. By combining the lemma with Theorem 1.1.3, we obtain the following
characterisation of strong approximation for split toric root stacks, which generalizes
Corollary 1.1.6 from toric varieties V ⊂ X to toric root stacks (X, m

√
D)→ X.

Corollary 1.1.10. Let X be a smooth split toric variety over a PF field (K,C) of
characteristic 0, let D1, . . . , Dn be the the torus-invariant prime divisors on X, let
m1, . . . ,mn ∈ N∗ ∪ {∞} and let Dm be the corresponding Campana divisor as in
Definition 2.1.19. Let T ⊂ ΩK be a finite nonempty set of places and let K be an
algebraic closure of K. Then

1. (X, m
√
D) satisfies strong approximation off T if π1(XK ,

m
√
DK) is finite and

|π1(XK ,
m
√
DK)| ∈ ρ(K,C). The converse also holds if Pic(C) is finitely gen-

erated.

2. (X, m
√
D) satisfies strong approximation if and only if (XK ,

m
√
DK) is simply

connected and O(XK ,
m
√
DK) = K.

1.2 M-points of bounded height

For the remainder of the thesis, we focus on counting M-points. For this we restrict
to rationally connected pairs, as we will define in Chapter 4. In Conjecture 1.2.2, we
propose an asymptotic formula for the number of M-points of bounded height, for
any smooth, proper and rationally connected pair (X,M) over a number field. This
conjecture generalizes both Manin’s conjecture on rational points of bounded height
[FMT89; Pey95; LST22], as well as its extension to Campana points [PSTVA21,
Conjecture 1.1] as formulated by Pieropan, Smeets, Tanimoto and Várilly-Alvarado.

Conjecture 1.2.2 is formulated using the Picard group of the pair, which we in-
troduce and study in Chapter 4. In Chapter 5, we will then prove our conjecture on
M-points for toric pairs over Q.

1.2.1 Heights and Manin’s conjecture

A height on an algebraic variety X over a number field K is a function

H : X(K)→ R>0,

which measures the “complexity” of a rational point. Heights are a very important
tool in the study of rational points, used to prove many results in arithmetic geometry.
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For instance, they are used in the proof of the aforementioned Mordell-Weil theorem
[Wei28] and the Mordell Conjecture [Fal83]. The most studied height function is the
Weil height on projective space. For a rational point P = (x1 : · · · : xn) ∈ Pn−1(K),
the Weil height is the product

H(P ) =
∏

v∈ΩK

max(|x1|v, . . . , |xn|v),

where ΩK is the set of places of K and | · |v is the v-adic norm on K. Thus for a
given variety X with a given embedding X ⊂ Pn−1, we get a height function on K
by restricting the Weil height to X. More generally, given any line bundle L on X
with an adelic metrization L, we obtain a height

HL : X(K)→ R>0

on X as defined in [Pey95, §1.3]. Manin’s conjecture gives a prediction for the number
of rational points of bounded height on a rationally connected variety (such as a Fano
variety). We recall the most recent version of the conjecture, which is given for
example in [LST22, Conjecture 1.2].

Conjecture 1.2.1. [Manin’s conjecture] Let X be a proper smooth rationally con-
nected variety over a number field K and assume that X(K) is not a thin set. Then
for every big and nef divisor class L with an adelic metrization L, there exists a thin
set Z ⊂ X(K) such that

#{P ∈ X(K) \ Z | HL(P ) ≤ B} ∼ cBa(X,L)(logB)b(K,X,L)−1 as B →∞,

where c > 0 is a constant, a(X,L) is the infimum of all rational numbers a such
that aL+KX is an effective Q-divisor class and b(K,X,L) is the codimension of the
minimal face of the pseudo-effective cone containing a(X,L)L+KX .

As an important special case, the conjecture implies that on a Fano variety there
exists a thin set Z such that the number of points P ∈ X(K) \Z with anti-canonical
height H−KX

(P ) ≤ B is asymptotic to

cB(logB)rankPic(X)−1

as cB →∞, where −KX is any metrization of the anti-canonical divisor class −KX .
Manin’s conjecture was first formulated and studied in 1989 and 1990 by Manin,

Batyrev, Tschinkel and Franke [FMT89; BM90]. Peyre [Pey95] further contributed
to the conjecture by giving a conjectural value for the constant c. More recently
Lehmann, Sengupta and Tanimoto [LST22] have formulated a prediction for the thin
set Z that has to be excluded.

1.2.2 An generalisation of Manin’s conjecture forM-points of
bounded height

Now we will formulate a version of Manin’s conjecture for M-points. Let (X,M) be
a smooth, proper and rationally connected pair over a number field K, as defined in
Section 4.3. For such a pair, we introduce its Picard group Pic(X,M) along with
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a natural group homomorphism pr∗M : Pic(X) → Pic(X,M), as well as its canonical
divisor class K(X,M) ∈ Pic(X,M). Using these notions, we define the Fujita invariant
a((X,M), L) and the b-invariant b(K, (X,M), L) for pairs analogously to the respec-
tive invariants for varieties as in [LST22]. We use these geometric invariants to give
an asymptotic formula for the number of M-points of bounded height.

Let L = (L, ∥·∥) be an adelically metrized line bundle on X. For a subset A ⊂
X(K) and an integer B, consider the counting function

N(A,L, B) = #{P ∈ A | HL(P ) ≤ B}.

Fix a finite set S of places of K including all infinite places, and let OS ⊂ K be the
ring of S-integers.

Conjecture 1.2.2. Let (X,M) be a smooth proper pair over a number field K such
that (X,M) is rationally connected, and let (X ,M) be an integral model of (X,M)
over OS. Assume furthermore that (X ,M)(OS) ⊂ X(K) is Zariski dense in X. Then
for every big and nef divisor class L with an adelic metrization L, there exists a thin
set Z ⊂ X(K) such that

N((X ,M)(OS) \ Z,L, B) ∼ cBa((X,M),L)(logB)b(K,(X,M),L)−1 as B →∞,

where a((X,M), L) and b(K, (X,M), L) are the Fujita invariant and the b-invariant
as in Definition 4.2.14 and c is a constant.

Conjecture 1.2.2 can be directly seen to be a generalization of Manin’s conjecture,
formulated in Conjecture 1.2.1. It is not as straightforward to show that the conjecture
generalizes its analogue for Campana points, formulated in [PSTVA21, Conjecture
1.1], but in Section 4.4 we show that the invariants in the two conjectures agree
with each other. In particular, Conjecture 1.2.2 is also compatible with [CLT+25,
Conjecture 8.3], as that conjecture only differs from [PSTVA21, Conjecture 1.1] in the
prediction of the leading constant c. Aside from implying the conjecture [PSTVA21,
Conjecture 1.1] on Campana points, Conjecture 1.2.2 also predicts the asymptotic
growth for the number of Darmon points and weak Campana points of bounded
height, for which no such predictions exist in the literature. Weak Campana points
of bounded height were discussed in [PSTVA21], but the authors of that article did
not give any prediction for their asymptotic growth.

Remark 1.2.3. By Corollary 4.4.13, Conjecture 1.2.2 implies that for any Cam-
pana pair (X,Dm), the number of Darmon points of bounded height has the same
asymptotic growth as the number of Campana points of bounded height, up to possi-
bly differing leading constants. For weak Campana points, the asymptotic growth is
similar to Campana points as their Fujita invariants agree, but the exponent on the
logarithm tends to be larger, as shown in Proposition 4.4.10.

Remark 1.2.4. As we will see in Section 3.5, Darmon points correspond to integral
points on the corresponding root stack. Conjecture 1.2.2 therefore gives a predic-
tion for the asymptotic number of integral points of bounded height on a root stack
(X , m

√
D), where the height is induced by any metrized big and nef line bundle on X.

This is related to the conjecture by Ellenberg, Satriano and Zureick-Brown on the
number of rational points of bounded height on stacks [ESZ23, Conjecture 4.14] and
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its generalization by Darda and Yasuda [DY24, Conjecture 9.16]. Their conjectures
use different heights however: the heights we consider are what Darda and Yasuda
call an unstable height, while their conjecture uses stable heights instead.

Remark 1.2.5. In contrast to Manin’s conjecture, as we have formulated it in Con-
jecture 1.2.1, and its analogue for Campana points [PSTVA21, Conjecture 1.1], we do
not assume that the set ofM-points in Conjecture 1.2.2 is not thin. Instead, we only
require that it is Zariski dense. The reason for this is that Theorem 1.2.7, introduced
in the next section, implies the conclusion of Conjecture 1.2.2 for every proper toric
pair, even though there are many such pairs (X,M) for which the set of M-points
is thin by Theorem 3.3.5. Furthermore, there are no known examples of rationally
connected varieties with a thin, but nonempty, set of rational points. Any such exam-
ple would contradict an open conjecture by Colliot-Thélène [Ser08, Conjecture 3.5.8],
[Col88].

Remark 1.2.6. In the analogue of Manin’s conjecture for Campana points, formu-
lated in [PSTVA21, Conjecture 1.2], the authors additionally assume that the integral
model X is regular, which we do not assume here. The main reason for imposing such
a restriction in their paper is to give a prediction for the leading constant c appearing
in their conjecture. As we do not provide a prediction for this constant c appearing
in Conjecture 1.2.2, we do not impose this condition.

1.2.3 M-points of bounded height on toric varieties

In Chapter 5 we will show that Conjecture 1.2.2 is true for any smooth proper toric
pair over Q, i.e. for a smooth pair (X,M) where X is a smooth split toric variety over
Q and the chosen divisors D1, . . . , Dn are torus-invariant. In this chapter, we will
always take the integral model (X ,M) to be the toric integral model as in Definition
3.1.1. Furthermore, for a divisor class L ∈ Pic(X), we let L be the metrized line
bundle obtained by equipping L with the toric metric as in [BT96, Theorem 2.1.6]
and we let HL be the corresponding height on X, which we will recall in Section 5.2.1.
For a positive integer S and any real number B, we consider the counting function

N(X,M),L,S(B) := N((X ,M)(Z[ 1S ]) ∩ U(Q),L, B), (1.2.1)

where U is the dense torus in X. The main result of this section is the following
theorem, which implies Conjecture 1.2.2 for toric pairs over Q.

Theorem 1.2.7. Let (X,M) be a smooth proper toric pair over Q with toric integral
model (X ,M) over Z and let L ∈ Pic(X) be a big and nef divisor class. Then there
exists θ > 0 and a polynomial Q of degree b(Q, (X,M), L)− 1 such that

N(X,M),L,S(B) = Ba((X,M),L)
(
Q(logB) +O

(
B−θ

))
.

Furthermore, if L is adjoint rigid with respect to (X,M), then the leading coefficient
of Q is explicitly given in Theorem 5.2.5 as well as in Theorem 5.2.10.

Here the condition that L is ad-
joint rigid means that the class a((X,M), L) pr∗M L + K(X,M) is represented by an
unique Q-divisor on (X,M), see Definition 4.2.20. This theorem is a special case of
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Theorem 5.2.5, which also allows the pair to be quasi-proper as in Definition 4.2.21,
rather than proper. To prove Theorem 1.2.7 for divisors which are not adjoint rigid
with respect to (X,M), we need to consider quasi-proper pairs to show that Q has
degree equal to, rather than at most, b(Q, (X,M), L)− 1.

Theorem 1.2.7 implies [PSTVA21, Conjecture 1.1] for split toric varieties over Q,
including the conjecture for the leading constant if L is adjoint rigid. This generalizes
the results by Pieropan and Schindler [PS24a, Theorem 1.2] to heights corresponding
to divisors different from the log-anticanonical divisors, and improves on their error
term. The theorem is proved using the universal torsor method, as developed by Sal-
berger [Sal98]. The proof proceeds along the lines of de la Bretèche’s proof [dlBre01a]
of Manin’s conjecture for split toric varieties with the anticanonical height, together
with Salberger’s computation of the leading constant [Sal98, Section 11]. Besides gen-
eralizing their results toM-points, it generalizes their proofs to handle other heights
than the anticanonical height.

Therefore, Theorem 1.2.7 is of interest even in the classical setting of rational
points, as it improves on the original proof of Manin’s conjecture for toric varieties
by Batyrev and Tschinkel [BT96, Corollary 1.5] by providing a good control of the
error term. In the classical setting of rational points, Theorem 1.2.7 and its proof
are similar to [Ess07, Theorem 1], where heights coming from other metrizations are
considered. We finish the section by giving a few examples to illustrate Theorem
1.2.7. In these examples, we will consider weak Campana points.

Example 1.2.8. Theorem 1.2.7 implies that

#

{
(x : y : z) ∈ P2(Q)

∣∣∣∣∣x, y, z ∈ Z \ {0}, gcd(x, y, z) = 1,

xyz is squareful, max(|x|, |y|, |z|) ≤ B

}
=

B3/2(Q(logB) +O(B−θ))

as B → ∞, where θ > 0 is a constant and Q is a cubic polynomial with leading
coefficient ∏

p prime

(
1− p−1

)6( 1− p−3/2(
1− p−1/2

)3 − 3p−1/2

)
≈ 0.862.

See Example 5.2.6 for the derivation of this result.

Example 1.2.9. More generally, Theorem 1.2.7 implies that for any positive integers
m and n,

#

(x1 : · · · : xn) ∈ Pn−1(Q)

∣∣∣∣∣∣∣
x1, . . . , xn ∈ Z \ {0}, gcd(x1, . . . , xn) = 1,
n∏

i=1

xi is m-full, max(|x1|, . . . , |xn|) ≤ B

 =

Bn/m(Q(logB) +O(B−θ))

as B →∞, where θ > 0 is a constant and Q is a polynomial of degree(
m+ n− 1

n− 1

)
−
(
m− 1

n− 1

)
− n.

We will derive this result in Example 5.2.8.
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Remark 1.2.10. In [Str22, Theorem 1.1], Streeter derived a very similar asymptotic
formula for a related counting problem. Assume that gcd(n,m) = 1 or n is prime.
Under this assumption, he shows that for any given norm form Nω for a Galois
extension L/K of degree n,

#

(x1 : · · · : xn) ∈ Pn−1(K)

∣∣∣∣∣∣∣
x1, . . . , xn ∈ Z, gcd(x1, . . . , xn) = 1,

Nω(x1, . . . , xn) is m-full,

max(|x1|, . . . , |xn|) ≤ B

 ∼
cBm/n(logB)b(n,m)−1

as B →∞, where c > 0 is a constant and

b(n,m) =
1

n

((
m+ n− 1

n− 1

)
−
(
m− 1

n− 1

))
.

In particular, we find

deg(Q) = n(b(n,m)− 1),

where Q is the polynomial in Example 1.2.9.

1.3 Notation and preliminaries

1.3.1 Natural numbers

We use the convention that the set of natural numbers N contains 0 and we write N∗

for the set of nonzero natural numbers. We also define the set of extended natural
numbers N := N ⊔ {∞} as the one point compactification of the discrete space N.
We use the convention that 1

∞ = 0. The topology on N is the topology such that

the map N → R given by n 7→ 1
n+1 is a homeomorphism onto its image. We extend

the greatest common divisor function to allow its arguments to lie in N by setting
gcd(∞, a1, . . . , an) = gcd(a1, . . . , an) and gcd(∞) = 0.

1.3.2 Algebra and analysis

We typically denote vectors using boldface and write their components using a normal
face together with an index. For example, we may write s = (s1, . . . , sn) for a vector
in Rn. For two vectors a,b ∈ Rn, we write a > b if ai > bi for all i = 1, . . . , n. We
also denote the i-th basis vector of Rn by ei.

For an abelian group G, we writeGQ = G⊗ZQ andGR = G⊗ZR for its base change
to Q and R, respectively. For a symbol D we write Z(D) for the group isomorphic
to Z with generator D, and similarly we write Q(D) ∼= Q for the vector space with
generator D.

The logarithm log refers to the natural logarithm. For two nonnegative functions
f, g the notation f(x)≪ g(x) means that there exists a constant c such that f(x) ≤
cg(x) for all x in the common domain of the functions f and g.
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1.3.3 Geometry

For a field k we write k for a choice of an algebraic closure. All schemes are taken
to be separated. For a scheme X over a base scheme S and a morphism S′ → S of
schemes, we denote the base change by S′ as XS′ := X×S S

′. If S′ = SpecR, we also
write XR in place of XS′ .

Given a Q-Weil divisor D =
∑

i aiDi on X we define its floor as ⌊D⌋ =
∑

i⌊ai⌋Di.
If D is an effective Cartier divisor on X, then we will routinely identify it with the
closed subscheme of X defined by the sheaf of ideals OX(−D) ⊂ OX . If D1 and D2

are Cartier divisors, then the closed subscheme D1 +D2 is defined by the ideal sheaf
I = OX(−(D1 +D2)) ⊂ OX .

We define a variety over a field k to be a separated scheme of finite type over k,
and a curve to be an integral variety of dimension 1. Note that curves are defined to
be integral and separated of finite type, but not necessarily geometrically integral.

If k is a topological field and X is a variety over k, then X(k) is equipped with
the induced topology. This is the topology such that for any affine open subvariety
U ⊂ X with a closed embedding U → An

k the map U(k) → kn is a homeomorphism
onto its image.

All fundamental groups considered in this thesis are étale fundamental groups.

1.3.4 PF fields

We now introduce PF fields, based on a course taught by Artin at Princeton in
1950/51, of which the lecture notes are found in [Art67, Chapter 12]. See Remark
1.3.4 for the etymology of the term.

Definition 1.3.1. A PF field is defined to be a pair (K,C) where either

� K is a number field, the function field of C = Spec(OK), where OK is the ring
of integers of K, or

� K is the function field of a regular projective curve C over a field k.

We call K a global field if K is a number field or k is finite.

Remark 1.3.2. The scheme C is specified in order to give a good notion of a place
of K if K is a function field. For example if k = l(C ′) is a function field of some
curve C ′ over a field l and K = k(C), then the curve C cannot be recovered from the
field K alone. This issue does not arise if k is finite or when the embedding k → K
is specified.

Note that every finitely generated field extension K/k of transcendence degree 1
over a field k is naturally a PF field. Each such field is the function field of an affine
curve over k, which we can compactify and normalize to obtain a regular projective
curve C. This curve is the unique regular projective curve C with K = k(C), since
any birational map C → C ′ to a regular projective curve is a morphism and therefore
an isomorphism.

Remark 1.3.3. Note that while the curve C is regular, it need not be geometrically
connected nor geometrically reduced over k. For example, we can consider C =
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P1
k ×k Spec l for a finite separable extension l/k or a finite inseparable extension
l/k, respectively. The former subtlety disappears if we replace the base field k with
its algebraic closure k′ in K, since C is a geometrically connected curve over k′.
In particular, if k is perfect, then C will be a geometrically integral curve over k′.
However, C need not be geometrically reduced over k′ without this assumption, as
shown by the curve

C = {sxp + typ + zp = 0} ⊂ P2
k

over the field k = Fp(s, t), where p is a prime number. Furthermore, even if C is
geometrically integral over k, it need not be smooth as shown by the curve

C = {txp + zp−1y + yp = 0} ⊂ P2
k

over the field k = Fp(t), where p > 2 is a prime number.

Note that if B ⊂ C is an open subscheme, then B is affine, unless K is a function
field and B = C.

We use the convention that a discrete valuation on K contains 1 in its image. If
K is a number field, then a finite place of K is a discrete valuation on K. If K is a
function field, then a finite place of K is a discrete valuation on K which is trivial
on k. We denote the set of finite places of K by Ω<∞

K . There is a natural bijection
between the closed points on C and Ω<∞

K , and we will thus routinely identify finite
places and closed points. Given a finite place v of K, its degree is the degree of the
associated closed point, and define the absolute value on K induced by v as

|a|v = p− deg(v)v(a).

Here, p is the characteristic of the residue field kv if char(kv) > 0, and p = 2 if
char(kv) = 0.

For a number field, an infinite place is an embedding v : K → C, where conjugate
embeddings into C are identified. We denote the set of infinite places of K by Ω∞

K .
An infinite place v is real if it factors through an embedding K → R and complex
otherwise. An infinite place v induces an absolute value on K by

|a|v = |v(a)|e,

where | · | is the standard absolute value on C and e = 1 if v is real and e = 2 if v is
complex. If K is a function field, we set Ω∞

K = ∅. For any PF field K we define the
set of places on K to be

ΩK = Ω<∞
K ⊔ Ω∞

K .

Remark 1.3.4. The term PF field stands for Product Formula field, named after
the formula ∏

v∈ΩK

|x|v = 1

for all x ∈ K×.

For a place v ∈ ΩK , we denote by Kv the completion of K with respect to the
absolute value | · |v. This field is locally compact if and only if K is a global field. If
v is a finite place, we set

Ov = {x ∈ Kv | |x|v ≤ 1}.
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For an infinite place v, we simply set Ov = Kv. If X is a scheme over an open
subscheme B ⊂ C, then for a place v ∈ B, we write Xv = X ×B SpecOv.

1.3.5 Restricted products and adeles

Definition 1.3.5. Let I be an index set, and for each i ∈ I, let Xi be a topological
space with a subspace Ui ⊂ Xi, which is not necessarily open. Then the underlying
set of the restricted product of these spaces is

∏
i∈I

(Xi, Ui) :=

{
(xi)i∈I ∈

∏
i∈I

Xi

∣∣∣∣∣ xi ∈ Ui for all but finitely many i ∈ I

}
.

This set is given the finest topology such that for all finite sets J ⊂ I, the inclusion
map

πJ :
∏
i∈J

Xi ×
∏

i∈I\J

Ui ↪→
∏
i∈I

(Xi, Ui)

is continuous.

If J ′ ⊂ J are finite subsets of I, then the map
∏

i∈J′ Xi×
∏

i∈I\J′ Ui →
∏

i∈J Xi×∏
i∈I\J Ui is a continuous map. Thus for any finite subset J ⊂ I there is a natural

homeomorphism ∏
i∈I

(Xi, Ui) ∼=
∏
i∈J

Xi ×
∏

i∈I\J

(Xi, Ui).

We will now consider the topological properties of two types of inclusions between
restricted products.

Proposition 1.3.6. For i ∈ I, let Xi be a topological space with subspaces Zi ⊂ Yi ⊂
Xi. Then

1. if
∏

i∈I(Xi, Zi) ̸= ∅, the natural inclusion∏
i∈I

(Xi, Zi) ↪→
∏
i∈I

(Xi, Yi)

is continuous and has dense image.

2. The natural inclusion
∏

i∈I(Yi, Zi) ↪→
∏

i∈I(Xi, Zi) is a topological embedding
and it is open if Yi ⊂ Xi is open for all i ∈ I.

Proof. For a finite set J ⊂ I, we define (X,Y )J :=
∏

i∈J Xi ×
∏

i∈I\J Yi and we

define (X,Z)J and (Y,Z)J similarly. We will first prove the first statement. By the
definition of the restricted product topology, a subset V ⊂

∏
i∈I(Xi, Yi) is open if and

only if for every finite subset J ⊂ I, V ∩ (X,Y )J is open in (X,Y )J . Thus if V is an
open subset of

∏
i∈I(Xi, Yi), then V ∩ (X,Z)J is open in (X,Z)J so the inclusion is

continuous.
To show that the map has dense image, we show that V ∩

∏
i∈I(Xi, Zi) ̸= ∅ for

every nonempty subset V ⊂
∏

i∈I(Xi, Yi). Let J ⊂ I be such that (X,Z)J ̸= ∅. For
any finite subset J ⊂ I such that V ∩ (X,Y )J ̸= ∅, the set V ∩ (X,Y )J contains
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an nonempty open subset
∏

i∈I Vi, with Vi open in Xi if i ∈ J , Vi open in Yi if
i ∈ I \J and Vi = Yi for all but finitely many i ∈ I, by basic properties of the product
topology. Let J ′ ⊂ I be the finite subset of i ∈ I for which Vi ̸= Yi or Yi ̸= ∅, then
V ∩ (X,Z)J′ ̸= ∅ and the map therefore has dense image.

Now we will prove the second statement. The image im(ι) of ι :
∏

i∈I(Yi, Zi) ↪→∏
i∈I(Xi, Zi) with the subspace topology has the finest topology such that every

continuous map A →
∏

i∈I(Xi, Zi) with set-theoretic image in im(ι) factors con-
tinuously through im(ι). Therefore if ι is continuous, then it is an embedding. If
V ⊂

∏
i∈I(Xi, Zi) is open, then V ∩ (X,Z)J is open in (X,Z)J for every finite subset

J ⊂ I, and since (Y, Z)J is a subspace of (X,Z)J , V ∩ (Y,Z)J is open in (Y, Z)J .
Thus the inclusion map is continuous. If furthermore Yi ⊂ Xi is open for all i ∈ I,
then V ∩

∏
i∈I(Xi, Zi) is open, so the inclusion map is an open map.

Using this construction, we define the ring of adeles.

Definition 1.3.7. Let (K,C) be a PF field and let T be a finite set of places. The
ring of adeles of K prime to T is the topological K-algebra

AT
K =

∏
v∈ΩK\T

(Kv,Ov).

For a nonempty open subset B ⊂ C the ring of B-integral adeles prime to T is the
topological K-algebra

AT
B =

∏
v∈B

Ov ×
∏

v∈ΩK\B

Kv.

The following proposition will be used in Proposition 3.5.2 to relate adelic Darmon
points to adelic points on the associated root stack.

Proposition 1.3.8. Let (K,C) be a PF field, let T be a finite set of places and
let B ⊂ C be an open subset. Then every finitely generated ideal in AT

K or AT
B is

principal. In particular, Pic(AT
K) = Pic(AT

B) = 0.

Proof. We will prove the statement for AT
K and note that the statement for AT

B

follows analogously. If we have an ideal I = ((av)v∈ΩK\T , (bv)v∈ΩK\T ), then we
can for every finite place v ∈ Ω<∞

K \ T consider tv, sv ∈ O×
v such that v(cv) =

min(v(av), v(bv)), where cv = tvav + svbv. Then I = ((cv)v∈ΩK\T ) and therefore I
is principal. Thus induction on the number of generators shows that every finitely
generated ideal is principal. By [Stacks, Tag 0B8N], invertible ideals are finitely
generated, hence Pic(AT

K) = 0.



2. Pairs and M-points

In this chapter we introduce pairs andM-points and we will illustrate these concepts
with many examples. In Chapter 2, we will introduce the M -approximation and we
prove general results about pairs satisfying this property. In Chapter 3, we continue
the study of M -approximation in the special setting of toric pairs.

2.1 M-points

In this section we introduceM-points, generalizing the notions of integral points and
Campana points. We fix a PF field (K,C) and an open subscheme B ⊂ C.

2.1.1 Integral models of pairs

First we define pairs and their integral models.

Definition 2.1.1. Let X be a scheme over a scheme B and let (Dα)α∈A be a finite

tuple of closed subschemes on X. Let M ⊂ NA
be a subset satisfying (0, . . . , 0) ∈M

and such that for all m ∈M the element m′ defined by

m′
α =

{
0 if mα ̸=∞,
∞ if mα =∞,

lies in M.
For such a set we let

M := ((Dα)α∈A,M)

and we call (X,M) a pair over B , M the set of multiplicities, and M the parameter
set. We will call

⋃
α∈ADα the boundary of (X,M) and denote its complement in X

by U = X \
⋃

α∈ADα. If A = ∅, then we write M = 0 and we say that M is trivial.

The technical condition on M is very mild and it will ensure that for any place
v ∈ ΩK the M-points over Ov lie in the M-points over Kv, as we will define in
Definition 2.1.12. This definition generalizes the notion of Campana pairs given in
[Cam11a, Définition 2.1], which we recover if B = SpecC, X is a normal variety, the
Dα are Weil divisors and M is chosen to encode the Campana condition found in
Definition 2.1.19.

Remark 2.1.2. Note that the notion of a pair (X,M) is more general than the
notion of an M -curve as studied by Darmon in [Dar97], even when we restrict X to
be a curve. However, an M -curve can be naturally viewed as a pair, as we will see in
Definition 2.1.19.

19
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In the later chapters on toric varieties, the subschemes Dα will be divisors, but
there are advantages to allowing them to be arbitrary closed subschemes, as we will see
later in this chapter. As in the case of Campana orbifolds [Cam05; Abr09; PSTVA21],
the points on the pair are only defined after a choice of an integral model, which we
define as follows.

Definition 2.1.3. Let X be a proper variety over a PF field (K,C). A scheme X
over B is an integral model of X over B if it is proper over B and its generic fiber is
isomorphic to X over K.

Note that we do not require the integral models to be flat over B.

Definition 2.1.4. Given a pair (X,M) with X a proper variety over a PF field
(K,C), an integral model of (X,M) over B is a pair (X ,M), where X is an integral
model of X over B and M = ((Dα)α∈A,M), where for all α ∈ A, Dα ⊂ X is an
integral model of Dα over B. We also say that (X ,M) is a pair over B.

Note that we do not require the Dα to be flat over B. Given an integral model
over B, we can restrict it to open sets in B as follows.

Definition 2.1.5. Let (X,M) be a pair with integral model (X ,M) over B. If
B′ ⊂ B is a nonempty open subset, then we define the integral model (X ,M)B′ over
B′ as

(X ,M)B′ = (X ×B B′,MB′),

where MB′ = ((Dα ×B B′)α∈A,M).

In the literature on Campana points, such as [PSTVA21; NS24; MNS24], there is
a canonical choice of an integral model Dα of Dα by taking the Zariski closure and
endowing it with the reduced scheme structure. We generalize this construction to
allow D to be nonreduced.

Proposition 2.1.6. Let X be a proper variety over K with integral model X . If
D ⊂ X is a closed subscheme over K, then there exists a unique closed subscheme
Dc ⊂ X with generic fiber Dc

K = D such that the inclusion Dc ⊂ X factors through

every closed subscheme D̃ ⊂ X with D̃K = D.

Proof. Consider the sheaf of ideals I on X defined as the kernel of the composition
OX → OX → OD of OX -algebras. This sheaf defines a closed subscheme Dc with
Dc

K = D. By construction Dc has the desired universal property.

We will call Dc the closure of D in X . The next proposition shows that the closure
interacts very well with the structure of Cartier divisors.

Proposition 2.1.7. Let X be a proper variety over a PF field (K,C) with integral
model X over B ⊂ C. If D is an irreducible effective Cartier divisor on X with
DK = D ̸= ∅, then D = Dc. In particular, if D1, D2 ⊂ X are subschemes such
that their closures Dc

1,Dc
2 in X are effective Cartier divisors, then (D1 + D2)c is an

effective Cartier divisor and

Dc
1 +Dc

2 = (D1 +D2)c

as subschemes of X .
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Proof. By construction, Dc is a closed subscheme of D. Therefore, by [Stacks, Tag
0AGB], there exists a Cartier divisor D′ on X such that D′ ⊂ Dc is an isomorphism
outside codimension 2. Now [Stacks, Tag 02ON] implies that there exists a Cartier
divisor D′′ such that D = D′ + D′′. As D is irreducible, we find Dred = D′′

red or
D′′ = ∅. If we write D′ = D′

K and D′′ = D′′
K , then we see D = D′ + D′′. However,

since D and D′ are isomorphic outside a codimension 2 subset, the codimension of
D′′ is at least 2 so D′′ = ∅, and thus D′′ = ∅. This implies D = D′ and therefore
D = Dc. The second part of the proposition now follows from the fact that Dc

1 +Dc
2

is a Cartier divisor with generic fiber D1 +D2, so (D1 +D2)c = Dc
1 +Dc

2.

Using the above construction, an integral model of the variety X induces an inte-
gral model of the pair (X,M):

Definition 2.1.8. Given a pair (X,M) and an integral model X of X over B, the
integral model of (X,M) induced by X is the pair (X ,Mc) over B, where Mc =
((Dc

α)α∈A,M).

Note that by spreading out (cf. [Poo17, §3.2]) any proper variety X over K has an
integral model over some nonempty open subscheme B ⊂ C. Hence, any pair (X,M)
over K has an integral model over such an open subscheme B ⊂ C.

2.1.2 Multiplicities and M-points

Now we will define intersection multiplicities andM-points. As before, we let X be a
proper variety over a PF field (K,C) with integral model X over an open subscheme
B ⊂ C. Let v ∈ B be a closed point and let P ∈ X(Kv). By the valuative criterion of
properness, P lifts to an unique point P ∈ X (Ov). For a closed subscheme D ⊂ X we
consider the scheme theoretic intersection P∩D, which is defined as the fiber product
of P : SpecOv → X and the closed immersion iD : D ↪→ X :

P ∩ D D

SpecOv X .

iD

P

As base change preserves closed immersions it follows that P ∩ D = Spec(Ov/I) for
an ideal I ⊂ Ov. As Ov is a discrete valuation ring, I = (0) or I = (πn) for some
n ∈ N, where π is a uniformizer of Ov. As in [MNS24, Definition 2.4] we make the
following definition.

Definition 2.1.9. The (local) intersection multiplicity nv(D,P) is defined to be

nv(D,P) =

{
n if I = (πn),

∞ if I = (0).

Note in particular that nv(D,P) =∞ exactly if P ⊂ D(Ov).

This definition agrees with the classical notion of local intersection multiplicity:
if X is a smooth surface over an algebraically closed field, Ov = OC,p is the local
ring of a point p on a smooth curve C ⊂ X and D ⊂ X is a Cartier divisor, then
nv(P,D) = (C ∩ D)p is the local intersection multiplicity of C and D in p as defined
in [Har77, Chapter V] unless C ⊂ D in which case nv(D,P) =∞.
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Example 2.1.10. If X = Pn
Ov

and Di is the i-th coordinate hyperplane, then given
an integral point P = (a0 : · · · : an), with ai ∈ Ov for all i ∈ {0, . . . , n} and
v(ai) = 0 for some i ∈ {0, . . . , n}, the intersection multiplicity is just the valuation
nv(Di,P) = v(ai).

The next proposition shows that the intersection multiplicity respects addition of
Cartier divisors.

Proposition 2.1.11. Let D1 and D2 be Cartier divisors on X and let P ∈ X (Ov).
Then

nv(D1 +D2,P) = nv(D1,P) + nv(D2,P).

Proof. This follows from the equality

P∗OX(−(D1 +D2))OY = P∗(OX(−D1)OX(−D2))OY

= P∗O(−D1)OY · P∗O(−D2)OY ,

of ideal sheaves on Y = SpecOv, which implies the identity.

Given a PF field (K,C) and a pair (X ,M) over B ⊂ C and a finite place v ∈ B,
we define the map

multv : X (Ov)→ NA
, P 7→ (nv(Dα,P))α∈A.

We also define, for a field extension L/K, the map

multL : X(L)→ {0,∞}A, P 7→ (nL(Dα, P ))α∈A,

where

nL(Dα, P ) :=

{
0 if P ̸∈ Dα(L),

∞ if P ∈ Dα(L)

indicates whether the point P lies in Dα. Using these notions we are finally ready to
define M-points.

Definition 2.1.12. Let (K,C) be a PF field, and let (X,M) be a pair over K with
integral model (X ,M) over an open subscheme B ⊂ C. For a field extension L/K,
we set

(X,M)(L) = (X ,M)(L) = {P ∈ X(L) | multL(P ) ∈M}.

For a finite place v ∈ B, the set of v-adicM-points on (X ,M) is defined as

(X ,M)(Ov) = {P ∈ X (Ov) | multv(P) ∈M}. (2.1.1)

If v ∈ ΩK \B, we set
(X ,M)(Ov) = (X,M)(Kv).

The set ofM-points on (X ,M) over B is defined as the subset of X (B) satisfying
Condition (2.1.1) at every place v ∈ B:

(X ,M)(B) = {P ∈ X (B) | multv(Pv) ∈M for all v ∈ B}.
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Note that
⋃

B⊂C(X ,M)(B) = (X,M)(K), where the union runs over all
nonempty open subschemes B of C.

Definition 2.1.13. Let (X,M) be a pair over K with integral model (X ,M) be a
pair over a scheme B. We define Mfin = M ∩ NA and we define Mfin and Mfin by
replacing M by Mfin.

The points on (X ,Mfin) are those in (X ,M) whose image does not lie in the
boundary

⋃
α∈ADα.

Remark 2.1.14. If we assume that the subschemes Dα are all Cartier divisors on
X , then we can give a different description of (X ,M)(B). Namely, if the image of a
morphism P : B → X does not lie in the boundary

⋃
α∈ADα, then the intersection

with Dα is simply the pullback P ∩ Dα = P∗Dα. So it follows that (X ,Mfin)(B)
is the set of points P ∈ X (B) not contained in the boundary, such that there exist

m1, . . . ,mk ∈Mfin and distinct prime divisors D̃1, . . . , D̃k in B such that

P∗Dα =

k∑
i=1

mi,αD̃i

for all α ∈ A.

For many interesting choices of M, the set of multiplicities M is an open subset

of NA
. For example, this is the case for integral points, Campana points and strict

Darmon points. In this case, the next proposition shows that the property of being a
M-point is open in X(Kv).

Proposition 2.1.15. Let X be a proper variety over a PF field (K,C) and let (X,M)

be a pair with integral model (X ,M) over B ⊂ C. Then the map multv : X(Kv)→ NA

is continuous for every finite place v ∈ B.

Therefore, if M ⊂ NA
is an open (or closed) subset, then (X ,M)(Ov) is an open

(or closed) subset of X(Kv).

Proof. It suffices to prove nv(D,−) : X(Kv)→ N is continuous for a single subscheme
D, as continuity is equivalent to continuity in all coordinates. Note that for P ∈
X (Ov) = X(Kv), the multiplicity nv(D,P) is the largest integer n0 such that there
exists a factorisation

D ×Ov
SpecOv/(π

n0
v )

SpecOv/(π
n0
v ) X ×Ov

SpecOv/(π
n0
v ),

where the horizontal and vertical homomorphisms are induced by P and by the inclu-
sion morphism iD : D → X , respectively. In particular, if two points P,P ′ ∈ X (Ov)
have the same reduction modulo (πn

v ) for some integer n, either

nv(D,P) = nv(D,P ′) < n
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or
min{nv(D,P), nv(D,P ′)} ≥ n.

Since the collection of open sets of the form

U(P, n) = {P ′ ∈ X (Ov) | P mod πn
v = P ′ mod πn

v ∈ X (Ov/π
n
v )},

P ∈ X(Kv) and n ∈ N, forms a basis for the topology on X (Ov), it follows that
nv(D,−) is indeed continuous. Thus multv is a continuous map.

2.1.3 M-points over other schemes

The definition of M-points over PF fields has a natural generalization to arbitrary
schemes, which we will give in this section. We will use this generalization in Chapter
4 to define rational connectedness of a pair (X,M) over a field, for which we consider
M -points on X over the projective line P1. Let X and Y be schemes over a base
scheme S and let P : Y → X be a morphism over S. For every prime Cartier divisor
v on Y and any closed subscheme D ⊂ X we can define an analogue nv(D,P ) of
the local intersection multiplicity as given in Definition 2.1.9 by considering the fiber
product P ∩D := Spec(Ov)×X D, where Ov is the local ring of Y along v, and the
morphism Spec(Ov)→ X is induced by the natural morphism Spec(Ov)→ Y . Since
Ov is a discrete valuation ring, P ∩D = SpecOv or P ∩D = Spec(Ov/I

n), where I
is the maximal ideal of Ov and n ∈ N.

Definition 2.1.16. The local intersection multiplicity nv(D,P ) is defined to be

nv(D,P ) =

{
n if I = (πn),

∞ if I = (0).

For any pair (X,M), we use this to define a multiplicity map

multv : Hom(Y,X)→ NA
,

given by P 7→ (nv(Dα, P ))α∈A, extending the definition of the multiplicity map given
in Section 2.1.2.

Definition 2.1.17. Let (X,M) be a pair over a scheme S and let Y be a scheme
over S which is Noetherian, connected and regular. Assume furthermore that Y is
not the spectrum of a field. Then a S-morphism P : Y → X is an M -point over Y
if multv(P ) ∈ M for all prime divisors v on Y . We denote the set of M -points over
Y by (X,M)(Y ). If Y = SpecR for some ring R, then we also write (X,M)(R) :=
(X,M)(Y ).

Note that when (K,C) is a PF field, S = B for some open subscheme B ⊂ C and
Y = B or Y = SpecOv for a finite place v ∈ B, then this definition agrees with the
original description given in Definition 2.1.12.

The assumption that Y is Noetherian and regular ensures that every divisor on
Y is a sum of prime Cartier divisors by [Stacks, Tag 0BCP]. The reason why we do
not allow Y to be the spectrum of a field in this definition is that such schemes do
not have any prime divisors. For fields, we define M -points in the same way we did
in Definition 2.1.12.
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Remark 2.1.18. If we additionally assume that the set Mfin is a monoid with topo-
logical closure M and that the subschemes Dα are Cartier divisors, then the assign-
ment

Y 7→ (X,M)(Y )

is a functor (X,M) from the category of connected and regular Noetherian schemes
over S to the category of sets. This follows from the following observation: if f : Y ′ →
Y is a morphism of such schemes over S and P : Y → X is a morphism over S, then
for every prime divisor v′ on Y ′, we have

multv′(P ◦ f) =
∑

v prime divisor on Y

cv multv(P ),

for cv ∈ N. Here cv is the multiplicity of v′ in the pullback of v to Y ′ if f(Y ′) ̸⊂ v
and cv =∞ otherwise.

2.1.4 Examples of M-points

Let X be a proper variety over a PF field (K,C) with a finite collection of closed
subschemes (Dα)α∈A. Fix an integral model X of X over B ⊂ C and set Dα = Dc

α.

By choosing different subsets M ⊂ NA
, we can construct many different pairs (X ,M).

We consider some choices, and afterwards we describe M-points on projective space
for these choices. We write U = X \

⋃
α∈ADα and U = X \

⋃
α∈ADα for the

complement of the boundary.

1. If M = {(0, . . . , 0)}, then the M-points over B are the integral points on U :
(X ,M)(B) = U(B) and (X,M)(K) = U(K).

More generally, if B ⊂ A and M = {m ∈ NA | mα = 0 if α ∈ B}, then
the M-points over B are the integral points on X \

⋃
α∈B Dα: (X ,M)(B) =

(X \
⋃

α∈B Dα)(B) and (X,M)(K) = (X \
⋃

α∈BDα)(K).

2. If M = NA
, then the set of M-points is the entire set of rational points:

(X ,M)(B) = (X,M)(K) = X(K). If on the other hand M = NA, then the
set consists of only the points not contained in the boundary: (X ,M)(B) =
(X,M)(K) = U(K).

3. If M = {0, 1}A, then (X ,M)(B) is the set of points on X over B that intersect
all Dα transversally. As we will see, we can think of these points as a sort of
“squarefree” points. We again have (X,M)(K) = U(K).

4. If

M =
⋃
α∈A
{w ∈ NA | wα′ = 0∀α′ ̸= α},

then (X ,M)(B) is the set of points on X over B which do not meet any inter-
section Dα∩Dα′ for α, α′ ∈ A, α ̸= α′, while (X,M)(K) consists of the rational
points not contained in any of of the intersections Dα ∩Dα′ .
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For the following examples we assume that the closed subschemes Dα and Dα

are prime Weil divisors, and Dα ̸= Dα′ if α ̸= α′. Consider a vector of mul-
tiplicities m = (mα)α∈A, where mα ∈ N∗ ∪ {∞} and define the Q-Weil divisor

Dm =
∑

α∈A

(
1− 1

mα

)
Dα, where we set 1

∞ = 0.

Definition 2.1.19. For X and Dm as above, we define special points as follows.

� Campana points on (X ,Dm) over B are the M-points over B for the pair

(X ,M), where M is the collection of w ∈ NA
such that for all α ∈ A we

have

1. wα = 0 if mα =∞ and

2. wα = 0 or wα ≥ mα if mα ̸=∞.

� Weak Campana points on (X ,Dm) over B are theM-points over B for (X,M),
where M is the collection of all w such that

1. wα = 0 if mα =∞ and

2. either wα = 0 for all α ∈ A or ∑
α∈A
mα ̸=1

wα

mα
≥ 1.

� Strict Darmon points on (X ,Dm) over B are the M-points where M is the
collection of w ∈ NA for which mα|wα for all α ∈ A. Here we use the convention

that the only integer divisible by∞ is 0. If we take the closure of M in NA
then

we obtain the Darmon points on (X ,Dm) over B.

Note that if mα =∞ for all α ∈ A, then all of the sets of M-points in Definition
2.1.19 reduce to the set of integral points on U .

Notation 2.1.20. We will sometimes refer to pairs (X ,Dm) and pairs(
X,
∑

α∈A

(
1− 1

mα

)
Dα

)
as Campana pairs, to distinguish them from the pairs con-

sidered in this thesis.

Note that all examples given in this section satisfy the property that M is an open

subset of NA
, except for the set M encoding the multiplicities for the Darmon points.

This follows from the fact that N ⊂ N is an open subspace with the discrete topology
and if U ⊂ N contains ∞, then U is open if and only if it contains all integers greater
than a fixed integer N0. The set of multiplicities is also closed for the other examples
except for the strict Darmon points, the integral points on U and the rational points
on U .

If we additionally assume that X is smooth, X is flat over B and the Dα are
Cartier divisors, then (weak) Campana points and Darmon points agree with their
definition as given in [MNS24]. If

∑
α∈ADα is furthermore a strict normal crossings

divisor, X is geometrically integral and X is regular, then the (weak) Campana points
agree with the definition given in [PSTVA21].
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Remark 2.1.21. In [MNS24] strong Campana points and strong Darmon points
are defined, of which the former were called Campana points in [NS24; Str22]. The
set of strong Campana points and the set of strong Darmon points are generally not
examples of sets ofM-points if the divisors Dα are not geometrically integral, as those
points are defined using the intersection multiplicities of the irreducible components of
Dα,Ov

. However, if the Dα are geometrically integral then strong Campana points and
strong Darmon points coincide with Campana points and Darmon points, respectively.

Remark 2.1.22. Consider a positive integer m and a prime Cartier divisor D on
a smooth proper variety X extending to a prime Cartier divisor D on an integral
model X . Then the Campana points and weak Campana points on (X , (1 − 1

m )D)
coincide and agree with the weak Campana points as defined in [Str22], even if D is
not geometrically irreducible.

M-points on projective space

To further illustrate the examples given above, we fix K = Q, B = SpecZ and X = Pn
Q

with integral model X = Pn
Z. Fix A = {0, . . . , n}. For i ∈ {1, . . . , n}, we define Di

to be the coordinate hyperplane {xi = 0} and let Di be the Zariski closure of Di

in X . Then for a point P = (a0 : · · · : an) with ai ∈ Z for all i ∈ {1, . . . , n} and
gcd(a0, . . . , an) = 1, the identity np(Di, P ) = vp(ai) holds for every prime number p.

In particular, given a set M ⊂ N{0,...,n}
= Nn+1

, we see that (Pn,M)(Z) is equal to

{(a0 : · · · : an) ∈ Pn(Z) | (vp(a0), . . . , vp(an)) ∈M for all prime numbers p}.

So in particular:

� If M = {0, 1}n+1, then

(Pn,M)(Z) = {(a0 : · · · : an) ∈ Pn(Z) | a0, . . . , an squarefree}.

� If M =
⋃n

i=0{w ∈ Nn+1 | wj = 0∀j ̸= i}, then

(Pn,M)(Z) = {(a0 : · · · : an) ∈ Pn(Z) | gcd(ai, aj) = 1∀i, j, i ̸= j}.

� The set of Campana points for the multiplicities m0, . . . ,mn is

(Pn,M)(Z) = {(a0 : · · · : an) ∈ Pn(Z) | ai is mi-full}.

Here we recall that for an integer m ≥ 1, we say that an integer n is m-full if
p|n implies pm|n for every prime number p. Furthermore, we define −1 and 1 to
be the only ∞-full numbers. Additionally, we will cal 2-full numbers squareful.

� The set of Darmon points for the multiplicities m0, . . . ,mn is

(Pn,M)(Z) = {(a0 : · · · : an) ∈ Pn(Z) | |ai| is an mi-th power}.

� If M = {w ∈ Nn+1 | wi ≤ wj if i ≤ j}, then

(Pn,M)(Z) = {(a0 : · · · : an) ∈ Pn(Z) | ai divides aj if i ≤ j}.
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Remark 2.1.23. The above descriptions easily generalize to the case where B =
SpecR for a principal ideal domain R. If on the other hand R is not a principal ideal
domain, then more care is needed since then it is not possible to write every rational
point P as P = (a0 : · · · : an) such that there is an equality (a0, . . . , an) = R as ideals.
For example, if R = Z[

√
−5], then the rational point (2 : 1 +

√
−5) ∈ P1(Q(

√
−5))

cannot be written in such a form.

For smooth split toric varieties with Dα the torus-invariant prime divisors, we will
see that we have a very similar concrete description for M-points, see Remark 3.2.5.

2.1.5 Equivalence of pairs

In the remainder of this chapter and all of Chapter 3, X is a variety over a PF field
(K,C), (X,M) is a pair and B ⊂ C is an open subscheme, unless specified otherwise.
It is clear from the definition ofM-points that some pairs (X ,M), (X ,M′) have the
same set of points or one is contained in the other for geometric reasons. Therefore
we introduce the following definition.

Definition 2.1.24. Let (X,M) and (X,M ′) be pairs with integral models (X ,M)
and (X ′,M′) over B. Then we say that (X ,M) is equivalent to (X ′,M′) if

(X ,M)(Ov) = (X ′,M′)(Ov) as subsets of X(Kv)

for all places v ∈ B. If X = X ′ we simply say that M is equivalent to M′. Similarly
we write (X ,M) ⊂ (X ′,M′) if

(X ,M)(Ov) ⊂ (X ′,M′)(Ov) as subsets of X(Kv)

for all places v ∈ ΩK . If X = X ′ we simply write M⊂M′.
If there exists a nonempty open subset B ⊂ C and equivalent integral models

(X ,M) and (X ′,M′) over B, then we say that M is equivalent to M ′. Similarly if
there exists a nonempty open subset B ⊂ C and integral models (X ,M) ⊂ (X ′,M′),
then we write M ⊂M ′.

The next proposition implies that any two integral models (X ,M) and (X ,M′)
of (X,M) over B become equivalent over some nonempty open subset B′ ⊂ B.

Proposition 2.1.25. Let (X,M) be a pair with integral models (X ,M) and (X ′,M′)
over B. Then there is a nonempty open subset B′ ⊂ B such that there is an isomor-
phism f : XB′ → X ′

B′ such that Dα,B′ maps isomorphically to D′
α,B′ for all α ∈ A. In

particular, (X ,M)B′ is equivalent to (X ′,M′)B′ .

Proof. As we can restrict to an open subset of B, we can without loss of generality
assume that X and X ′ are flat over B. The proof works via spreading out, and is
analogous to [Poo17, Theorem 3.2.1(iii)]. Here we use the fact that X and X ′ are
finitely presented over B and therefore Dα and D′

α are as well. [Poo17, Theorem
3.2.1(iii)] implies that the identity idX lifts to a morphism f : XB′ → X ′

B′ and a
morphism g : X ′

B′ → XB′ . By the same reasoning, we can take B′ ⊂ B a small enough
open such that, for all α ∈ A, we have f(Dα,B′) ⊂ D′

α,B′ and g(D′
α,B′) ⊂ Dα,B′ as

schemes. As g ◦ f : XB′ → XB′ and f ◦ g : X ′
B′ → X ′

B′ restrict to the identity on XK ,
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it follows from [EGA4, Théorème 8.10.5(i)] that there exists a nonempty open subset
B′′ ⊂ B′ such that fB′′ and gB′′ are isomorphisms and are inverses of each other and
therefore also identify Dα,B′′ and D′

α,B′′ under the isomorphism.

It can sometimes be convenient to remove the elements in M which correspond
to empty intersections of the boundary components Dα in X, which is why we make
the following definition.

Definition 2.1.26. Let (X,M) be a pair. Consider the subset Mred ⊂M defined by

Mred = {m ∈M | ∩mα ̸=0Dα ̸= ∅}.

We write Mred = ((Dα)α∈A,Mred). If M = Mred, then we call M reduced.

Proposition 2.1.27. If (X,M) is a pair, then M and Mred are equivalent.

Proof. Let X be an integral model of X over an open subset B ⊂ C. Then for all
subsets V ⊂ A with ∩α∈VDα = ∅, there exists a nonempty open subset BV ⊂ B such
that ∩α∈VDc

α,BV
= ∅. The intersection B′ = ∩BV over all such V is a nonempty

open subset of B, since A is finite. In particular, we see that for any integral model
(X ,M) of (X,M) over B, (X ,M)B′ is equivalent to (X ,Mred)B′ .

Example 2.1.28. To illustrate the difference between M and Mred, we take X = P1
Q

with integral model X = P1
Z and consider the disjoint divisors D1 = {X0 = 0} and

D2 = {X0−2X1 = 0} on P1
Q defined by the homogeneous ideals (X0) and (X0−2X1).

Then Dc
1 and Dc

2 are the divisors defined by the same ideals and Dc
1 ∩ Dc

2 is the sub-
scheme defined by the homogeneous ideal (2X1, X0). Note that (2X1, X0) and (2, X0)
define the same subscheme of P1

Z since X0 and X1 cannot vanish simultaneously. We
define

M = ((D1, D2),N2
),

so

Mred = ((D1, D2), {0} × N ∪ N× {0}).

Then (X ,Mc)(Z) = P1(Q), while

(X , (Mred)c)(Z) = {(x : y) ∈ P1(Q) | x, y ∈ Z, gcd(x, y) = 1, x odd}

since Dc
2 ×Z SpecF2 = Dc

1 ×Z SpecF2 = {X0 = 0} ⊂ P1
F2

, where F2 is the field
with two elements. However, if we invert 2, then the two pairs become equivalent:
(X ,Mc)(Z[ 12 ]) = (X , (Mred)c)(Z[ 12 ]) = P1(Q).

Example 2.1.29. Let X be a curve with disjoint divisors Dα and multiplicities
mα ∈ N∗ ∪ {∞} for α ∈ A, and consider the pairs (X,M) and (X,M ′) associated to
Campana points and weak Campana points on (X,Dm) as in Definition 2.1.19. Then
by Proposition 2.1.27 the pairs (X,M) and (X,M ′) are equivalent as M ′

red = Mred.
In particular, for every choice of integral models (X ,M) and (X ,M′) there exists an
open subset B ⊂ C such that (X ,M)(B′) = (X ,M′)(B′) whenever B′ ⊂ B is an
open subset.
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2.1.6 Inverse image of a pair

If we have a pair (X,M) and a morphism f : Y → X, we often want to to pull back
the structure on X to Y to get a pair (Y, f−1M) such that, given a lift f : Y → X
between integral models, there is an equality

f−1((X ,M)(B)) = (Y, f−1M)(B)

of subsets of Y(B).

Definition 2.1.30. Let f : Y → X be a morphism of schemes over a scheme B and
let (X ,M) be a pair over B. We define the inverse image of (X ,M) under f to be
the pair (Y, f−1M), where

f−1M = ((f−1Dα)α∈A,M),

and f−1Dα := Dα ×X Y.

Proposition 2.1.31. Let (K,C) be a PF field, let (X ,M) be a pair over B and let
f : Y → X be a morphism of schemes over an open subscheme B ⊂ C, where Y is an
integral model over B of a variety Y over K. Then for all closed points v ∈ B,

(Y, f−1M)(Ov) = {P ∈ Y (Kv) | f(P ) ∈ (X ,M)(Ov)},

and therefore

(Y, f−1M)(B) = {P ∈ Y (K) | f(P ) ∈ (X ,M)(B)}.

Proof. Let v ∈ ΩK , let Pv ∈ Y(Ov) and let α ∈ A. Since every square in the diagram

Pv ∩ f−1Dα f−1Dα Dα

SpecOv Y XPv f

is Cartesian, the fiber product of f ◦ Pv and Dα → X is the the same as the fiber
product of Pv and f−1Dα → X . Therefore, nv(Dα, f ◦ Pv) = nv(f−1Dα,Pv), and
thus the desired equalities hold.

Note that taking the induced integral model does not need to commute with taking
the inverse image since we can have

(Y, (f−1M)c)(B) ⊊ (Y, f−1(Mc))(B),

as the next example shows.

Example 2.1.32. Let K = k(t), for k a field, and let X = Y = P1
K , f = idX and

D = {(0 : 1)} ∈ X. Choose the integral model X = P1
k ×k A1

k of X over A1
k, let

P = ((0 : 1), 0) ∈ X , and let Y = BlP X be the blowup of X in P . Then Y is an
integral model of Y and f lifts to the blowup morphism f : Y → X . Furthermore
(f−1D)c is the strict transform of Dc, which is strictly contained in the inverse image:
f−1(Dc) = (f−1D)c ∪ f−1(P ). If we restrict the models to the open subset B =
Gm,k ⊂ A1

k, this discrepancy disappears and we find that XB
∼= YB .
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Note that if f : Y → X is a dominant map of integral varieties and the closed
subschemes Dα are Cartier divisors, the schemes f−1Dα are Cartier divisors [Stacks,
Tag 02OO], but usually not prime divisors. It can be convenient to have a pair
equivalent to (Y, f−1M) where the chosen closed subschemes are prime divisors, so
we introduce the following notion.

Definition 2.1.33. Let f : Y → X be a morphism of schemes over a scheme B and
let (X ,M) be a pair over B. Assume furthermore that f−1Dα is a sum of prime
Cartier divisors for all α ∈ A. Then we define the pullback of (X ,M) under f to be

the pair (Y, f∗M), where f∗M = ({D̃β}β∈B, f
∗M). The D̃β are the prime divisors

on Y contained in f−1Dα for some α ∈ A, without repetitions. We define

f∗M =

w′ ∈ NB
∣∣∣∣∣
∑

β∈B

cα,βw
′
β


α∈A

∈M

 ,

where the cα,β are given by

f−1Dα =
∑
β∈B

cα,βD̃β .

Note that this definition is unique up to changing the indexing on the divisors D̃β .
As a consequence of Proposition 2.1.11, (Y, f∗M) is equivalent to (Y, f−1M).

2.2 Adelic M-points and M-approximation

2.2.1 Adelic M-points

In this section we introduce adelic M -points and integral adelic M-points. Recall
from Section 1.3.4 that the adele ring of a PF field (K,C) prime to a finite set of
places T ⊂ ΩK is the restricted product

AT
K =

∏
v∈ΩK\T

(Kv,Ov),

which is given the structure of a topological K-algebra as in Definition 1.3.7. Using
the restricted product, we generalize the notion of adelic points on a variety X to
adelic M -points on a pair (X,M).

Definition 2.2.1. Let (K,C) be a PF field, let T ⊂ ΩK be a finite sets of places,
and let B ⊂ C be an open subscheme. Let (X,M) be a pair over (K,C) with integral
model (X ,M) over B. We define the space of integral adelicM-points over B prime
to T to be the product

(X ,M)(AT
B) =

∏
v∈ΩK\T

(X ,M)(Ov)

with the product topology. The space of adelic M -points over B prime to T is defined
as the restricted product

(X,M)(AT
K) =

∏
v∈ΩK\T

((X,M)(Kv), (X ,M)(Ov)).
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In Section 2.3 we will generalize these notions further in order to compare them to
the adelic points considered in [MNS24]. While the space of integral adelicM-points
depends on the choice of an integral model, even as a set, the space of adelic M -points
does not depend on such a choice.

Proposition 2.2.2. If (X,M) is a pair over (K,C) with integral models (X ,M) and
(X ′,M′) over B ⊂ C, and T ⊂ ΩK is a finite set of places, then there is a canonical
homeomorphism∏

v∈ΩK\T

((X,M)(Kv), (X ,M)(Ov))→
∏

v∈ΩK\T

((X,M)(Kv), (X ′,M′)(Ov)).

Proof. By Proposition 2.1.25 there exists a nonempty open B′ ⊂ B over which (X ,M)
and (X ′,M′) are equivalent. Denote by S′ the set of places in B \ (B′ ∪ T ). By the
properties of the restricted product as recalled in Section 1.3.5,∏

v∈ΩK\T

((X,M)(Kv), (X ,M)(Ov))

∼=
∏
v∈S′

(X,M)(Kv)×
∏

v∈ΩK\(T∪S′)

((X,M)(Kv), (X ,M)(Ov))

∼=
∏

v∈ΩK\T

((X,M)(Kv), (X ′,M′)(Ov))

In particular, (X,M)(AT
K) is well-defined for any pair (X,M), because every pair

has an integral model.

Example 2.2.3. If M = NA, then

(X ,M)(AT
B) = (X,M)(AT

K) =
∏

v∈ΩK\T

U(Kv),

where U = X \
⋃

α∈ADα.

Example 2.2.4. If M = {(0, . . . , 0)}, then the space of integral adelic points on U
(defined in [LS16, page 2] as S-adelic points) is the space of integral adelicM-points
on X :

U(AT
B) := (X ,M)(AT

B) =
∏

v∈ΩK\S∪T

U(Ov)×
∏

v∈S\T

U(Kv),

where we write S = ΩK \B, U = X \
⋃

α∈ADα and U = X \
⋃

α∈ADα. The space of
adelic points on U as in [LS16, page 2] is the space of adelic M -points:

U(AT
K) := (X,M)(AT

K) =
∏

v∈ΩK\S∪T

(U(Kv),U(Ov))×
∏

v∈S\T

U(Kv).

Integral adelicM-points also generalize the notion of adelic Campana points given
in [PSTVA21; NS24]: if M encodes the Campana condition for a divisor Dm as in
Definition 2.1.19, then we have an equality of topological spaces

(X ,M)(AT
B) = (X ,Dm)(AT

K),
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where the right hand side is defined as in [PSTVA21, Section 3.2] and [NS24, Definition
2.4].

Given inclusions (X,M) ⊂ (X,M ′), the natural injection (X,M)(AT
K) ↪→

(X,M ′)(AT
K) is continuous but it need not be a topological embedding. This is

because generally the restricted product topology is strictly finer than the subspace
topology on the product. This map does have dense image, as the next proposition
shows.

Proposition 2.2.5. Let (X,M) ⊂ (X,M ′) be pairs over (K,C) and let (X ,M) be
an integral model of the former pair over an open subscheme B ⊂ C, and let T ⊂ ΩK

be a finite set of places. Then:

1. The natural inclusion (X,M)(AT
K) ↪→ (X,M ′)(AT

K) is continuous. Further-
more, it has dense image if for all v ∈ ΩK \ T , the subset (X,M)(Kv) ⊂
(X,M ′)(Kv) is dense and (X,M)(AT

K) ̸= ∅. The former assumption is au-
tomatic if X is smooth and none of the Dα contain irreducible components of
X.

2. The natural inclusion (X ,M)(AT
B) ↪→ (X,M)(AT

K) is a topological embedding.
Furthermore, if (X ,M)(Ov) ⊂ (X,M)(Kv) is open for all v ∈ B, then the
inclusion is an open embedding.

Proof. These statements follow from general properties of restricted products and are
a special case of Proposition 1.3.6. If X is connected and none of the Dα contain
irreducible components of X, then (X,Mfin)(Kv) ⊂ X(Kv) is dense by Proposition
2.2.6, proved below.

Proposition 2.2.6. Let X be a connected smooth variety over a PF field (K,C) and
let U ⊂ X be a nonempty open subset. Then U(Kv) ⊂ X(Kv) is dense for all places
v ∈ ΩK . Therefore any nonempty analytic open V ⊂ X(Kv) is Zariski dense.

Proof. Consider the complement Z = X \ U . Since X is smooth, [Con12, Lemma
5.3] allows us to reduce to the case when X = An

K and Z is contained in the zero
locus of a single nonzero polynomial P . If X(Kv) = Kn

v contained a nonempty open
V such that V ⊂ Z(Kv), then P vanishes identically on V . For any point u ∈ V
and a line L ⊂ Kn

v through x, P vanishes identically on L since L ∩ V is infinite and
any nonzero univariate polynomial only has finitely many zeroes. Since for any two
points in Kn

v there exists a line through these points, this implies that P vanishes on
Kn

v and therefore it is the zero polynomial, which is a contradiction. Thus Z(Kv)
contains no nonempty open sets in X(Kv), so U(Kv) ⊂ X(Kv) is dense.

Suppose X is connected and V ⊂ X(Kv) is an analytic open. By the previous
part, V cannot lie in a proper closed subscheme of X, and therefore V is Zariski dense
in X.

Example 2.2.7. If M ⊂M ′, then Proposition 2.2.5 implies that the natural inclusion
(X,M)(AT

K)→ (X,M ′)(AT
K) has dense image. The analogous statement for integral

adelicM-points is not always true, however. Consider X = P1
Z, M = ((1 : 0), {0}) and

M ′ = ((1 : 0), {0,∞}). Then the set of points in (X ,Mc)(Zp) = {(a : 1) | a ∈ Zp} is
a closed subset of P1

Z(Zp) which is strictly smaller than (X ,M′c)(Zp) = {(a : 1) | a ∈
Zp} ∪ {(1 : 0)}.
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2.2.2 M-approximation

We now generalize the notion of strong approximation to M-points.

Definition 2.2.8. Let (K,C) be a PF-field, let T ⊂ ΩK be a finite set of places, let
(X,M) be a pair over (K,C) with integral model (X ,M) over B ⊂ C. Then we say
that (X ,M) satisfies integralM-approximation off T if

(X ,M)(B) ↪→ (X ,M)(AT
B)

has dense image, and we say that (X,M) satisfies M -approximation off T if

(X,M)(K) ↪→ (X,M)(AT
K)

has dense image. We say that (X,M) satisfies M -approximation if it satisfies M -
approximation off T = ∅.

Note that these notions only depend on the equivalence classes of (X ,M) and
(X,M).

If we take (X,M) to encode the integrality condition of an open subset U ⊂ X,
then we recover strong approximation as in [Poo17, §2.6.4.5].

Definition 2.2.9. The open subset U ⊂ X satisfies strong approximation off T if
(X,M) satisfies M -approximation off T with M = {(0, . . . , 0)}, where U = X \⋃

α∈ADα. Explicitly this says that

U(K) ↪→ U(AT
K)

has dense image. IfM = 0, then we also say that X = U satisfies weak approximation
off T .

Example 2.2.10. If M is the Campana condition for Dm as defined in Definition
2.1.19, then integral M-approximation for (X ,M) coincides with weak Campana
approximation for (X ,Dm) as studied in [NS24].

Now we will relate the different notions of approximation to each other. The
next proposition shows that integralM-approximation is equivalent to integralMfin-
approximation, provided that the M-points in the boundary lie in the closure of the
set of Mfin-points.

Proposition 2.2.11. Let T ⊂ ΩK be a finite set of places, let (X,M) be a pair over
(K,C) with integral model (X ,M) over B ⊂ C.

1. If (X,M) satisfies M -approximation off T , then (X,Mfin) satisfies Mfin-
approximation off T . If for every place v ∈ ΩK \ T , the subset (X,Mfin)(Kv) ⊂
(X,M)(Kv) is dense, then the converse also holds.

2. If (X ,M) satisfies integral M-approximation off T , then (X ,Mfin) satis-
fies Mfin-approximation off T . If for every place v ∈ ΩK \ T , the subset
(X ,Mfin)(Ov) ⊂ (X ,M)(Ov) is dense, then the converse also holds.
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Proof. The first statement follows from the fact that for any place v ∈ ΩK \ T ,
(X,Mfin)(Kv) is open in (X,M)(Kv). The converse statement follows from the fact
that (X,Mfin)(AT

K) → (X,M)(AT
K) has dense image by Proposition 2.2.5. Now we

prove the statements for integral M-approximation. Assume that (X ,M) satisfies
integral M-approximation off T . Then in particular, for any place v ∈ ΩK \ T ,

(X ,Mfin)(B) is dense in (X ,Mfin)(Ov) × (X ,M)(A
T⊔{v}
B ), since (X ,Mfin)(Ov) is

open in (X ,M)(Ov) by Proposition 2.1.2. Therefore every open
∏

v∈ΩK\T Uv ⊂
(X ,Mfin)(A

T⊔{v}
B ) contains an element in (X ,Mfin)(B), so (X ,Mfin) satisfies inte-

gralMfin-approximation off T . If (X ,Mfin)(Ov) is a dense subset of (X ,M)(Ov) for
all v ∈ ΩK \T , then the inclusion map (X ,Mfin)(AT

B)→ (X ,M)(AT
B) has dense im-

age. Therefore, if (X ,Mfin) satisfies integralMfin-approximation off T , then (X ,M)
satisfies integral M-approximation off T .

Using the Proposition 2.2.11, we are able to relate integralM-approximation and
M -approximation.

Proposition 2.2.12. Let (X,M) be a pair over (K,C) with an integral model (X ,M)
over B ⊂ C. Let T ⊂ ΩK\B be a set of places disjoint from the points of B. If (X,M)
satisfies M -approximation off T , then (X ,Mfin) satisfies integralMfin-approximation
off T .

Proof. By Proposition 2.2.11, (X,Mfin) satisfies Mfin-approximation off T . By Propo-
sition 2.2.5, the inclusion (X ,Mfin)(AT

B) ↪→ (X,Mfin)(AT
K) is an open embedding,

and (X,Mfin)(K) ∩ (X ,Mfin)(AT
B) = (X ,Mfin)(B). Since (X,Mfin)(K) is dense in

(X,Mfin)(AT
K), (X ,Mfin)(B) is dense in (X ,Mfin)(AT

B) as the intersection of a dense
set with an open subset is dense in the open subset.

The following proposition is an analog of [MNS24, Proposition 3.22] (and a gen-
eralization of [NS24, Lemma 2.8]). It is a partial converse to Proposition 2.2.12 and
that states if integralM-approximation on (X ,M) is preserved under restricting the
base B, then (X,M) satisfies M -approximation.

Proposition 2.2.13. Let (X,M) be a pair over (K,C) with integral model (X ,M)
over B ⊂ C and let T ⊂ ΩK be a finite set of places. If for every nonempty open sub-
scheme B′ ⊂ B, (X ,M)B′ satisfies integral MB′-approximation off T , then (X,M)

satisfies M -approximation off T . If furthermore, M ⊂ NA
is open, then the converse

also holds.

Proof. We first assume that (X ,M)B′ satisfies integralMB′ -approximation off T for
all B′ ⊂ B. Note that every P ∈ (X,M)(AT

K) lies in the subspace (X ,M)B′(AT
B′)

for some B′ ⊂ B. Thus since every open neighbourhood of P in (X ,M)B′(AT
B′) has

nonempty intersection with (X ,M)B′(B′), the same holds for any open neighbour-
hood of P in (X,M)(AT

K). Hence (X,M) satisfies M -approximation off T .

In the other direction, note that if M ⊂ NA
is open, then (X ,M)(Ov) ⊂

(X,M)(Kv) is open by Proposition 2.1.2. Therefore, by Proposition 2.2.5,
(X ,M)B′(AT

B′) is open in (X,M)(AT
K) so (X,M)(K) ∩ (X ,M)B′(AT

B′) =
(X ,M)B′(B′) is dense in (X ,M)B′(AT

B′).
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Using the concept of an inverse image of a pair introduced in Definition 2.1.30,
we can use birational morphisms, such as a resolution of singularities, to understand
M -approximation.

Proposition 2.2.14. Let (K,C) be a PF field, let T ⊂ ΩK be a finite set of places
and let f : Y → X be a birational morphism of proper integral K-varieties, where Y
is smooth over K. Suppose that the induced map Y (Kv) → X(Kv) is surjective for
all places v ∈ ΩK \ T . Then any pair (X,M) satisfies M -approximation off T if and
only if (Y, f−1M) satisfies f−1M -approximation off T .

If B ⊂ C is an open subscheme and f : Y → X spreads out to a morphism f : Y →
X of integral models, then any pair (X ,M) satisfies integralM-approximation off T
if and only if (Y, f−1M) satisfies integral f−1M-approximation off T .

Proof. By the assumption, it follows that the induced map (Y, f−1M)(AT
K) →

(X,M)(AT
K) is surjective by Proposition 2.1.31. Therefore, if (Y, f−1M) satisfies

f−1M -approximation, then (X,M) satisfies M -approximation. In the other direction,
if V ⊂ Y is the locus over which f is an isomorphism, then f−1((X,M)(K)) ∩ V (K)
is dense in (Y, f−1M)(AT

K)∩
∏

v∈ΩK\T V (Kv). Since Y is smooth, V (Kv) is dense in

Y (Kv) by Proposition 2.2.6, so f−1((X,M)(K)) ∩ V (K) is dense in (Y, f−1M)(AT
K)

for every place v ∈ ΩK \ T .

Remark 2.2.15. The surjectivity condition in Proposition 2.2.14 is referred to as
“arithmetic surjectivity” in the literature, see [LSS20].

2.2.3 Integral M-approximation and the M-Hilbert property

Now we will explore the relationship between integral M-approximation, the M-
Hilbert property and Zariski density. This is an extension of the classical theory of
the Hilbert property and weak approximation as presented in [Ser08, Chapter 3], and
of the Campana version introduced in [NS24].

Definition 2.2.16. Let X be an integral variety over K and let A ⊂ X(K). We say
that A is of type I if A ⊂ Z(K) for some proper closed subset Z of X.

We say that A is of type II if there is an integral variety Y with dimY = dimX
and a generically finite morphism f : Y → X of degree ≥ 2 such that A ⊂ f(Y (K)).

We say that A is thin if it is a finite union of sets of type I and II.

Remark 2.2.17. We do not assume that the morphisms in Definition 2.2.16 are
separable, unlike the definitions given in [BFP14; Lug22]. In particular, thin sets
as considered in those articles are thin sets as defined here, but not vice versa. For
example, if k is a perfect field of characteristic p > 0, then k(tp) ⊂ A1(k(t)) is a
thin set in the terminology of this thesis, but not according to the notion in [BFP14;
Lug22].

Definition 2.2.18. Let (X ,M) be an integral model over B of a pair (X,M). We
say that (X ,M) satisfies the M-Hilbert property over B if (X ,M)(B) is not thin as
a subset of X(K).

Note that every PF field K is Hilbertian (see for example [FJ05, Chapter 13]) and
imperfect if it is of positive characteristic, so by [FJ05, Proposition 12.4.3], A1(K) is
an example of a set which is not thin.
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In order to relate theM-Hilbert property to integralM-approximation over global
function fields as we do in Theorem 1.1.1, we need the following lemma.

Lemma 2.2.19. Let k be a field of positive characteristic and let f : Y → X be an
inseparable generically finite morphism of integral varieties over k((t)), where X is
smooth over k((t)). Then the image of the induced map Y (k((t))) → X(k((t))) is a
nowhere dense subset of X(k((t))), where the topologies are induced by the topology on
k((t)).

Proof. The proof is based on the observation that k((t)) → k((t)) given by x 7→ xp

has nowhere dense image in k((t)), where p = char(k). This is because the image is
contained in the closed set

⋂
i∈Z,p∤i Ci, where Ci is the set of Laurent polynomials with

vanishing i-th coefficient. Since every nonempty open set contains elements outside
of this closed set, the image is nowhere dense in k((t)).

First we show it suffices to prove the statement for an open subvariety U ⊂ X.
Since X is smooth, by [BLR90, §2.2, Proposition 11] it is covered by open subvarieties
U ⊂ X such that there exists étale morphism U → Ad

k((t)), where d is the dimension

of X. By [Con12, Lemma 5.3] the induced map U(k((t))) → Ad
k((t))(k((t))) is a local

homeomorphism. Since for a closed subvariety V ⊂ Ad
k((t)), the subset V (k((t))) ⊂

Ad
k((t))(k((t))) is nowhere dense, it follows that for any proper closed subvariety V ⊂ X,

the subset V (k((t))) ⊂ X(k((t))) is nowhere dense. Therefore it suffices to prove the
statement for some nonempty open subvariety U ⊂ X.

For a generically finite dominant morphism f : Y → X of integral varieties, we
can factor the extension K(Y )/K(X) as a separable extension L/K(X) followed by
a totally inseparable extension K(Y )/L, see [Stacks, Tag 030K]. This corresponds
to factoring the morphism into rational maps Y 99K Z 99K X, where Z 99K X is
separable and Y 99K Z is totally inseparable. We can assume that Z is not geomet-
rically integral, as otherwise [Stacks, Tag 0CDW] implies that Z(k((t))) is not Zariski
dense in Z. Since we can restrict X to a nonempty open U , without loss of gener-
ality, we can assume that the maps are morphisms and Z → X is étale. Therefore,
by [Con12, Lemma 5.3] we can without loss of generality assume that f : Y → X is
purely inseparable of degree equal to p := char(k).

Choose a separable generically finite rational map X 99K Ad
k((t)). Then the field

extension k((t))(x1, . . . , xd) ⊂ k((t))(Y ) induced by this rational map has inseparable
degree p. There are only finitely many fields in k((t))(Y ) containing k((t))(x1, . . . , xd).
Indeed, by Galois theory there are only finitely many separable extensions L of
k((t))(x1, . . . , xd) in k((t))(Y ). Furthermore, for any such a field extension L, there is
at most a single nontrivial purely inseparable extension L′/L in k((t))(Y ), since given
another such extension L′′ the compositum L′′L′/L is purely inseparable and therefore
has degree p, by multiplicativity of inseparable degrees [Stacks, Tag 09HK]. The prim-
itive element theorem [Stacks, Tag 030N] implies that k((t))(x1, . . . , xd) ⊂ k((t))(Y )
is a simple extension. Therefore for some nonzero polynomial g ∈ k((t))[y, x1, . . . , xd]
which is separable in y,

k((t))(Y ) = k((t))(x1, . . . , xd)[z]/(g(zp, x1, . . . , xd)),

where the p-th power is present since the extension is not separable. The separable
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closure of k((t)) in this field is

k((t))(X) = k((t))(x1, . . . , xd)[y]/(g(y, x1, . . . , xd)).

In order to reduce the argument to the power map x 7→ xp, we construct separable
dominant maps Y 99K Ad

k((t)) and X 99K Ad
k((t)). If dg

dxd
is not the zero polynomial,

then the Jacobi criterion implies that the projections to affine space corresponding to
the inclusions

k((t))(y, x1, . . . , xd−1) ⊂ k((t))(X)

and
k((t))(z, x1, . . . , xd−1) ⊂ k((t))(Y )

are separable. If dg
dxd

is the zero polynomial, we can reduce to the case that dg
dxd

is not
identically zero, by using the fact that g is separable in y and by using linear change
of variables replacing y with y + xd.

Therefore, we get a Cartesian diagram of dominant rational maps

Y Ad
k((t))

X Ad
k((t)),

f h

where the horizontal maps are separable, and the map h is the p-th power map in the
first coordinate and the identity in the other coordinates. Since we can without loss
of generality restrict X to an open subset U , we can assume that the horizontal maps
are étale morphisms. Since the image of Ad

k((t))(k((t))) → Ad
k((t))(k((t))) is a nowhere

dense subset, applying [Con12, Lemma 5.3] once more to the horizontal maps shows
that the image of Y (k((t))) in X(k((t))) is nowhere dense.

Now we will prove Theorem 1.1.1, which we will prove separately for global fields
and for function fields over infinite fields.

Proof of Theorem 1.1.1 for global fields. First we prove the statements for global
fields. This part of the proof is based on [NS24, Theorem 1.1, Remark 2.12], and
generalizes it to global fields and varieties which are not normal or even integral.

We first assume that X is geometrically irreducible. Note that the statement of the
theorem is equivalent to saying that if theM-Hilbert property over B is not satisfied
and (X ,M)(B) ̸= ∅, then integral M-approximation does not hold for any finite set
of places T . We proceed by proving the following stronger claim: if A ⊂ (X ,M)(B)
is thin, then there is a finite set of places T ′ ⊂ ΩK disjoint from T such that A is
not dense in

∏
v∈T ′(X ,M)(Ov). We recover the original statement by taking A =

(X ,M)(B). By the argument in [Ser08, Proof of Theorem 3.5.3] if the claim holds
for thin sets A1, A2 ∈ (X ,M)(B), then it holds for A1 ∪A2.

For a set A which is not Zariski dense (thin of type I), the result follows from the
Lang–Weil bound [LW54] in the same manner as in the proof of [NS24, Theorem 1.1].
In particular, we conclude that (X ,M)(B) is Zariski dense in X.

Now let A ⊂ f(Y (K))∩(X ,M)(B) for Y an integral variety over K and f : Y → X
a dominant generically finite morphism of degree ≥ 2. Without loss of generality, we
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can assume that f is finite, since the image of a Zariski closed subset in Y is a type
I thin set. There are two cases to consider: either f is separable or it is inseparable.
If f is separable, then the result follows from [Ser08, Theorem 3.6.2] (which extends
to separable morphisms over global fields) and the proof of [NS24, Theorem 1.1], see
also [NS24, Remark 2.12]. This finishes the claim for separable morphisms. For global
function fields we need to consider inseparable morphisms.

Thus we now assume f : Y → X is an inseparable morphism. For every place v ∈
ΩK , the Cohen structure theorem [Stacks, Tag 0C0S] implies Ov

∼= kv[[t]]. Therefore
Lemma 2.2.19 implies that for every place v ∈ ΩK the subset f(Y (Kv)) ∩ U(Kv) ⊂
U(Kv) is nowhere dense, where U is the smooth locus of X. Since (X ,Mfin)(Ov) is
nonempty and open in X(Kv) by Proposition 2.1.2, A ∩ U(Kv) ∩ (X ,Mfin)(Ov) ⊂
(X ,Mfin)(Ov) is nowhere dense. Since X(Kv) \ U(Kv) is a thin set of type I, its
restriction to (X ,Mfin)(Ov) is not dense in (X ,Mfin)(Ov). Thus A∩(X ,Mfin)(Ov) ⊂
(X ,Mfin)(Ov) is not dense so A ⊂ (X ,M)(Ov) is not dense. This proves the claim.

Now assume that X is irreducible, but not necessarily geometrically irreducible.
We will prove that (X ,M)(Ov) contains a smooth point in X(Kv) for some place
v ∈ ΩK , and then conclude that therefore X(K) contains a smooth point. As X is
irreducible, U = X \

⋃
α∈ADα is irreducible as well. Write U = X \

⋃
α∈ADα. If X is

not geometrically irreducible, choose a finite separable extension K ′ of K such that
XK′ splits into geometrically irreducible components Xi. Write B′ for the regular
scheme associated to the integral closure of OB in K ′. The splitting also induces a
splitting of the integral model X ×BB

′ into components Xi which are integral models
of the Xi. Write Ui = Xi ∩ (U ×B B

′). Write T ′ for the places in ΩK′ above T . As in
the previous part, the Lang–Weil bound [LW54] implies that, for all but finitely many
places v′ ∈ ΩK′ , Ui(kv′) contains a smooth point. In particular, if we choose a finite
place v ∈ B \T which splits completely in K ′ and such that for a place v′ ∈ B′ above
v, Ui(kv′) contains a smooth point, then U(kv) = U(kv′) contains a smooth point as it
contains Ui(kv′). Thus by Hensel’s lemma [Poo17, Theorem 3.5.63] U(Ov) contains a
smooth point. Since (X ,M)(B) ̸= ∅ and (X ,M) satisfies integral M-approximation
off T , we see that X(K) contains a smooth point, and thus by [Stacks, Tag 0CDW],
we see that X is geometrically integral.

If X is not irreducible, then there are disjoint open sets U1,U2 ⊂ U , where U is
as above. By the same reasoning as when X was irreducible, the Lang–Weil bound
implies that we can find distinct places v1, v2 ∈ ΩK \T such that U1(Ov1) and U2(Ov2)
are nonempty. But P ∈ (X ,M)(B) cannot simultaneously lie in the open sets U1(Ov1)
and U2(Ov2) as U1 is disjoint from U2. This is a contradiction, so we find that X has
to be irreducible.

Proof of Theorem 1.1.1 for function fields over infinite fields. Now assume that K =
k(C) for an infinite field k and a regular curve C over k. First we assume that X
is irreducible. Let U = X \

⋃
α∈ADα be the closure of U = X \

⋃
α∈ADα in X .

Since X is geometrically reduced, there exists a nonempty open subset Y ⊂ U such
that the restriction of the structure morphism X → B to Y, written f : Y → B, is
smooth. Note that B is a Jacobson scheme [Stacks, Tag 01P2], f is dominant and of
finite presentation, and by [Mor20, Théorème 4.2.3.(1)] B is a “schéma de Poonen”.
Therefore [Mor20, Théorème 3.2.(3)] implies that there exists a point y ∈ Y such
that f(y) is a closed point and the residue field satisfies k(y) = k(f(y)). If we write
v = f(y), then this implies that y ∈ Y(kv) ⊂ U(kv) is a rational kv-point, and thus
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by Hensel’s Lemma [Poo17, Theorem 3.5.63], U(Ov) contains a smooth point P . In
particular, [Stacks, Tag 0CDW] implies that X is geometrically integral.

Since P is smooth, there exists an open V ⊂ X which is smooth over Kv. Thus
Proposition 2.2.6 implies V ∩ U(Ov) is Zariski dense as it contains P , so U(Ov) is
Zariski dense. Since (X ,M)(B) is dense in (X ,M)(Ov) in the analytic topology, it
is Zariski dense in X.

Now if we assume that X is not irreducible, we find a contradiction in the exact
same manner as in the global function field case. So X has to be geometrically
integral.

The next example shows that the set of rational points on a variety that satisfies
weak approximation can fail to be Zariski dense if the variety is not geometrically
reduced.

Example 2.2.20. Let k = Fp(a, b) and K = k(t) for algebraically independent
variables a, b, t. Define X to be the closed subvariety of P3

k(x, y, z, w) given by

xp − zpa = yp − zpb = 0.

For every place of v of K, Kv is a simple extension of k((t)). However, k((t))(a1/p, b1/p)
is a degree p2 extension of k((t)) which is not simple. Indeed if it were simple, then
there would be a primitive element α such that k((t))(a1/p, b1/p) = k((t))(α), but
αp ∈ k((t)) would imply that the extension has degree p rather than p2. Thus we see
that Kv cannot contain k((t))(a1/p, b1/p). Consequently, for any Kv-point on X we
must have z = 0, and therefore

X(Kv) = X(K) = X(k) = {(0 : 0 : 0 : 1)}.

This implies that X satisfies weak approximation while X(K) is not Zariski dense.

As a consequence of Theorem 1.1.1, we give a new proof of Minchev’s theorem.

Corollary 2.2.21 ([Min89, Theorem 1]). Let U be a normal variety over a number
field K, which satisfies strong approximation off a finite set of places T ⊂ ΩK . Then
UK is algebraically simply connected, i.e. π1(UK) = {1}.

Proof. Let X be a normal compactification of U and let X be a normal integral model
of X over OS , where T ⊂ S is some finite set of places. Let D be the Zariski closure
of X \ U in X and let U = X \ D be its complement. By Proposition 2.2.12, U
satisfies integral strong approximation off S. Therefore, Theorem 1.1.1 implies that
X is geometrically integral and U(OS) ⊂ X(K) is not thin. Assume that UK is not
simply connected. Then [Poo17, Lemma 3.5.57] implies that there exists a nontrivial
finite étale morphism f : Y → U where Y is a geometrically integral variety over
K. By spreading out [Poo17, Theorem 3.2.1(ii)], there exists a finite set of places S′

containing S and a finite étale morphism Y → U ×OS
SpecOS′ extending f , where Y

is a scheme with YK ∼= Y . This contradicts [Lug22, Theorem 1.8], so UK has to be
simply connected.
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2.3 (M,M′)-approximation

We conclude Chapter 2 by generalizing the notions of adelic M -points and integral
adelicM-points introduced in Definition 2.2.1, in order to relate these notions to the
adelic points considered in [MNS24]. The notions and results in this section will not
be used in later chapters.

Definition 2.3.1. Let (K,C) be PF field, T ⊂ ΩK be a finite sets of places and let
B ⊂ C be an open subscheme. Let (X,M) ⊂ (X,M ′) be an inclusion of pairs with
integral models (X ,M) ⊂ (X ,M′). We define the space of adelic (M,M′)-points
over B prime to T to be the restricted product

(X ,M,M′)(AT
B) =

∏
v∈ΩK\T

((X ,M′)(Ov) ∩ (X,M ′)(Kv), (X ,M)(Ov)).

If (X ,M) = (X ,M′), this recovers the notion of integral adelic M-points, while
if (X ,M′)(Ov) = (X,M)(Kv) for all v ∈ ΩK then this recovers the notion of adelic
M -points.

Remark 2.3.2. The definition of (M,M′)-points generalizes the notion of adelic
semi-integral points considered in [MNS24]: ifM′ encodes the Campana (respectively
Darmon) condition for a divisor Dm as in Definition 2.1.19 and M is the integrality
condition for the support of Dm, then there is an equality of topological spaces

(X ,M,M′
fin)(AT

B) = (X ,Dm)∗st(A
T
B),

where the right hand side is the set of strict T -adelic semi-integral points as in [MNS24,
Definition 2.15]. However, the full set of T -adelic semi-integral points (X ,Dm)∗(AT

B)
differs as a set from (X ,M,M′)(AT

B), since a point (Pv)v ∈ (X ,M,M′)(AT
B) is

integral with respect to the support of Dm at all but finitely many places v, while a
non-strict point in (X ,Dm)∗(AT

B) lies in the boundary for all places.

In the remainder of the section we will generalize some results of Section 2.2.
The following proposition is an analogue of Proposition 2.2.2, and shows that the

space of adelic (M,M′)-points does not depend on the choice of an integral model
for (X,M).

Proposition 2.3.3. If (X,M) is a pair with integral models (X ,M) and (X ,M′)
over B, and (X ,M′′) is an integral model over B of the pair (X,M) such that
(X ,M), (X ,M′) ⊂ (X ,M′′) are open, then there is a canonical homeomorphism

(X ,M,M′′)(AT
B) ∼= (X ,M′,M′′)(AT

B).

Proof. This follows from the proof of Proposition 2.2.2 by replacing the term
(X,M)(Kv) in the proof with (X ,M′)(Ov).

In light of the previous proposition, and the fact that every pair over K has an
integral model over C, we will not specify the integral model (X ,M) of (X,M) and
write (M,M′) instead of (M,M′).

The next proposition is an analogue of Proposition 2.2.12 and gives conditions for
when the natural inclusion maps are embeddings or have dense image.
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Proposition 2.3.4. Let (X,M) ⊂ (X,M ′) ⊂ (X,M ′′) be pairs and let (X ,M) ⊂
(X ,M′) ⊂ (X ,M′′) be inclusions of integral models over B of the respective pairs,
and let T ⊂ ΩK be a finite set of places. Then:

1. The natural inclusion (X ,M,M′′)(AT
B) ↪→ (X ,M ′,M′′)(AT

B) has dense image
if (X ,M,M′′)(AT

B) ̸= ∅.

2. The natural inclusion (X ,M,M′)(AT
B) ↪→ (X,M,M′′)(AT

B) is a topological
embedding, and it is open if (X ,M′)(Ov) ⊂ (X ,M′′)(Ov) is open for all v ∈
ΩK \ T .

Proof. This is a direct consequence of Proposition 1.3.6.

We now generalize the notion M -approximation to (M,M′)-approximation.

Definition 2.3.5. Let T ⊂ ΩK be a finite set of places, let (X,M), (X,M ′) be pairs
over (K,C) such that M ⊂M ′ and let (X ,M′) be an integral model of (X,M ′) over
B ⊂ C. Then we say that X satisfies (M,M′)-approximation off T if the image of
the natural inclusion

(X ,M′)(B) ∩ (X,M)(K) ↪→ (X ,M,M′)(AT
B)

is dense.

The restriction to (X,M)(K) ensures that the inclusion map is well-defined.

Example 2.3.6. If (X ,M′) is the pair corresponding to the Campana (or Darmon)
condition for the Campana pair (X ,Dm) and M ⊂M ′ is the integral condition with
respect to the support of Dm, then (M,M′)-approximation on X coincides with
strong Campana (or Darmon) approximation on (X ,Dm) as studied in [MNS24], up
to the slightly differing adelic space as discussed in Remark 2.3.2.



3. Split toric varieties and

M-approximation

In this chapter we study M -approximation and theM-Hilbert property for toric pairs.

3.1 Cox coordinates on toric varieties

In this section we introduce toric varieties and their Cox coordinates, following and
generalizing [CLS11, Chapter 5.1] and [Sal98, Chapter 8]. Given any fan Σ as in
[Sal98, Definition 8.1.1] (not necessarily complete or regular), we define the toric
scheme associated to Σ over Z to be XΣ,Z as in [Sal98, Remark 8.6]. This is a normal,
separated scheme over Z and it is proper (resp. smooth) over Z if and only if Σ is
complete (resp. regular). For any scheme S, we define the toric scheme associated to
Σ over S to be XΣ,S := XΣ ×Z S. For the remainder of the section, we let K be a
field and write XΣ := XΣ,K for the normal split toric variety associated to the fan Σ.

For a fan Σ, we write Σ(1) for the collection of rays in Σ, Σmax for the collection
of maximal cones in Σ, and {D1, . . . , Dn} for the set of torus-invariant prime divisors
on X := XΣ. We denote the lattice of cocharacters of X by N and its dual by N∨.
For a torus-invariant divisor Di, we write ρi ⊂ NR for the associated ray and nρi

∈ N
for its ray generator.

Definition 3.1.1. If X = XΣ is a normal split toric variety over a PF field (K,C),
then its toric integral model over B ⊂ C is X = XΣ,B . If (X,M) is a pair with
A = {1, . . . , n} and D1, . . . , Dn the torus-invariant prime divisors on X, then we call
(X,M) a toric pair and we say that its toric integral model over B is (XΣ,B ,Mc).
We denote the open torus in X by U .

In the remainder of this chapter, we assume that the ray generators nρi span NR.
This is equivalent to the split toric variety X = XΣ,K not having torus factors, or

equivalently OX(XK)× = K
×

.
Now we introduce Cox coordinates on the integral points on the toric variety: we

write the toric scheme X = XΣ,Z as a quotient X = Y/G for some open subscheme
Y ⊂ An

Z and a group scheme G ⊂ Gn
m,Z. We have an exact sequence

0→ N∨ → ZΣ(1) → Cl(Σ)→ 0, (3.1.1)

as in [CLS11, Theorem 4.1.3], where Cl(Σ) is the class group of any toric variety over
a field with the fan Σ. We define the Z-group scheme

G = Hom(Cl(Σ),Gm,Z),

43
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which by the above exact sequence is the kernel of the homomorphism

Gn
m,Z
∼= Hom(ZΣ(1),Gm,Z)→ Gd

m,Z
∼= Hom(N∨,Gm,Z)

induced by the inclusion N∨ ↪→ ZΣ(1). Here d is the rank of the lattice N . In
particular, for every ring R, we have the description

G(R) =

{
t ∈ (R×)n

∣∣∣∣∣
n∏

i=1

t
⟨m,nρi

⟩
i = 1 for all m ∈ N∨

}
,

where ⟨·, ·⟩ : N∨ ×N → Z is the natural pairing. Now for each cone σ ∈ Σ, let

xσ̂ =

n∏
i=1
ρi ̸⊂σ

xi,

and let
Z = {xσ̂ = 0 | for all σ ∈ Σ} ⊂ An

Z.

Then Y = An
Z \Z carries the natural structure of a toric scheme, and the subscheme G

acts on it by coordinate-wise multiplication. Similarly to [CLS11, Proposition 5.1.9],
we find the Cox morphism π : An

Z \ Z → X of toric schemes, which is constant on
G-orbits and gives a bijection between the closed toric subschemes of Y and those of
X .

Lemma 3.1.2. Let X , Y and π be as in the discussion above. The morphism π : Y →
X is an universal categorical quotient for the action of G on An

Z \ Z. If furthermore
Σ is regular and Cl(Σ) is torsion-free, then π is a G-torsor.

If Σ is regular, the Cox morphism is referred to as the universal torsor of X , such
as in [Sal98; FP16]. To prove the lemma we first need the following generalization of
[CLS11, Proposition 5.0.9] to general rings.

Proposition 3.1.3. Let G be a linearly reductive group scheme over a ring R (as in
[Alp13, Section 12]) acting on an affine R-scheme SpecA. Then the induced mor-
phism SpecA→ SpecAG is a universal categorical quotient for this action, where AG

is the subalgebra containing the elements in A invariant under the action of G.

Proof. Since G is linearly reductive, by [Alp13, Remark 4.8] (see also [Alp13, Theorem
13.2]) the morphism of R-stacks [SpecA/G]→ SpecAG is a good moduli space [Alp13,
Definition 4.1]. In particular, any morphism SpecA→ S to some R-scheme S which is
constant on G-orbits factors uniquely as SpecA→ [SpecA/G]→ SpecAG → S, since
good moduli spaces are universal for maps to schemes [Alp13, Theorem 4.16(vi)].
Thus we see that SpecA → SpecAG is a categorical quotient. Since good moduli
spaces are preserved under base change [Alp13, Proposition 4.7], it is furthermore a
universal categorical quotient.

Proof of Lemma 3.1.2. The proof of the first part is exactly as in [CLS11, Theorem
5.1.11], where we replace the use of [CLS11, Proposition 5.0.9] by Proposition 3.1.3,
where we use that G is linearly reductive by [Alp13, Example 12.4.(2)]. The second
part follows from [CLS11, Theorem 3.3.19], where regularity is used to ensure that
the bijective morphisms of cones σ̂ → σ induced by π restrict to bijective maps

σ̂ ∩
(
ZΣ(1)

)∨ → σ ∩N .
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Using the construction just given, we can define Cox coordinates on a split toric
variety.

Definition 3.1.4. Let X and π : Y → X be as above, and let B be a scheme. For
any P ∈ Y(B), we say that P = (P1, . . . , Pn) are Cox coordinates for the point
π(P ) ∈ X (B), where Pi ∈ O(B). We will write π(P ) = (P1 : · · · : Pn), in analogy
with homogeneous coordinates.

When can all points in X (B) be represented by Cox coordinates for a scheme
B? If Σ is regular and complete, then Cl(Σ) is torsion-free. Therefore Lemma 3.1.2
shows that the Cox morphism is a G-torsor. Therefore [FP16, Proposition 2.1] gives
a decomposition

X (B) =
⊔

[W ]∈H1
fppf (B,G)

Wπ(WY(B)), (3.1.2)

for every scheme B. Here Wπ : WY → X is the twist of π by −[W ] ∈ H1
fppf (B,G) as

defined in [Sko01, p.22].
Note that in this case G ∼= Gn−d

m,B . Thus H1
fppf (B,G) ∼= Pic(B)n−d if B is regular.

If B = SpecR for a unique factorisation domain then this implies that every R-point
is represented by Cox coordinates.

Proposition 3.1.5. Let Σ be a regular and complete fan, let X = XΣ, and let R be a
unique factorisation domain. Then every P ∈ X (R) is represented by Cox coordinates:

X (R) = π(Y(R)), (3.1.3)

where π is the Cox morphism.

If we instead consider singular toric varieties, then we can still show that rational
points are represented by Cox coordinates, as long as Cl(Σ) is torsion-free.

Proposition 3.1.6. Let Σ be a fan such that Cl(Σ) is torsion-free and let k be a
field. Then every point P ∈ X (k) = XΣ(k) is represented by Cox coordinates:

X (k) = π(Y(k)), (3.1.4)

where π is the Cox morphism.

Proof. By the Orbit-Cone Correspondence [CLS11, Theorem 3.2.6, Proposition 3.2.7],
the torus-invariant orbits V ∼= Gs

m(k) on a split toric scheme X correspond to the
closed toric subschemes Z of Y of dimension s by restricting to the dense torus
in Z and by taking k-points. Since π induces a bijection between the closed toric
subschemes of Y and those of X , it also induces a bijection between the torus orbits
in Y(k) and in X (k). Since every torus orbit contains a k-point, every torus orbit
V ⊂ X (k) contains the image of a point in Y(k). Since Cl(Σ) is torsion-free, the short
exact sequence 0 → N∨ → ZΣ(1) → Cl(Σ) → 0 splits, which gives a splitting of the
associated exact sequence

0→ G → Gn
m,Z → Gd

m,Z → 0,

and thus the map Gn
m,Z(k) → Gd

m,Z(k) is surjective. Let V ⊂ X (k) be a torus orbit

and consider the map ϕ : Gd
m,Z(k) → V from the k-points of the dense torus in X



46 3. Split toric varieties and M -approximation

to V , induced by the map on tori. By combining [CLS11, Lemma 3.2.5] and the
same splitting argument as above to the exact sequence (3.2.6) in [CLS11], we see
that ϕ is surjective. Combining the surjectivity of these maps, the composite map
Gn

m,Z(k)→ V is surjective. By the commutative diagram

Gn
m,Z(k) V ′

Gd
m,Z(k) V,

ϕ

where V ′ is the torus orbit in Y(k) above V , the map V ′ → V is surjective. Since
every rational point lies in a torus orbit, the map Y(k)→ X (k) is surjective.

By applying Proposition 3.1.6, we will show that any toric resolution of singular-
ities of normal split toric varieties is surjective on rational points. For this we first
need the following proposition, which characterizes when the class group of a split
toric variety is torsion-free.

Proposition 3.1.7. Let X be a normal split toric variety without torus factors. Then
Cl(X) is torsion-free if and only if the ray generators {nρ | ρ ∈ Σ(1)}, span N as a
lattice. Similarly, for a prime number p, Cl(X) does not have p-torsion if and only if
the ray generators {nρ | ρ ∈ Σ(1)} span N/pN as a lattice.

Proof. The class group being torsion-free is equivalent to Cl(X) being a projective
Z-module, which by the splitting lemma is equivalent to the existence of a retraction
ZΣ(1) → N∨ of the exact sequence (3.1.1). Taking Z-duals, we see this is equivalent to
the projection ZΣ(1) → N having a section, and therefore to it being surjective. The
second statement follows from tensoring with Z/pZ and using the same argument for
Z/pZ instead of Z.

Corollary 3.1.8. Let k be a field and let X be a normal split toric variety over k.
Then any proper birational toric morphism f : X̃ → X induces a surjection X̃(k) →
X(k). In particular, this holds whenever f is a toric resolution of singularities.

Proof. Let Σ and Σ̃ be the fans of X and X̃ in a common co-character lattice N and
let P ∈ X(k) be a point, not contained in the open torus. We first show that we can
assume that Cl(X) is torsion free. We compactify X to obtain a complete toric variety
X ⊂ X ′. Since the intersection of all toric affine opens Uσ ⊂ X ′ corresponding to
maximal cones σ ∈ Σ is just the torus, there exists such an open Uσ not containing P .
We subdivide σ into a collection of smooth maximal cones including σ′′ and let X ′′ be
the resulting complete toric variety. This yields a birational morphism X ′′ → X ′ of
complete toric varieties, such that X ′′ contains an affine open Uσ′′ corresponding to a
smooth maximal cone. Therefore Proposition 3.1.7 implies that the class group of X ′′

is torsion-free. Since the statement to be proved is Zariski local, and there exists an
open subset P ∈ U ⊂ X such that the restriction X̃ ×X′ U → U is an isomorphism,
we can assume without loss of generality that Cl(X) is torsion free.

The toric birational morphism X̃ → X is induced by subdividing the cones in
Σ into smaller cones, which gives an inclusion Σ(1) ⊂ Σ̃(1) of sets of rays. Let

Σ̃(1) \ Σ(1) = {ρn+1, . . . , ρñ} be the rays in Σ̃ which do not lie in Σ. By Proposition
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3.1.6 there exists Cox coordinates for P : P = (a1 : · · · : an) ∈ X(K). Then consider

the point P̃ = (a1 : · · · : an : 1 · · · : 1) ∈ X̃(k). Then it follows from the construction

of Cox coordinates that f(P̃ ) = P .

3.2 M-approximation for split toric varieties

Now we restrict ourselves to the case where X is a complete normal split toric
variety of dimension d over a PF field K. Consider a toric pair (X,M), where
M = ((Di)

n
i=1,M), and let (X ,M) be its toric integral model. These assumptions

are fixed for the rest of the paper, unless specified otherwise.

To understand whether a toric pair (X,M) satisfies M -approximation, we can use
Proposition 2.2.14 to reduce to the case of a smooth toric variety:

Corollary 3.2.1. Let (K,C) be a PF field, let T ⊂ ΩK be a finite set of places, let

(X,M) be a toric pair and let f : X̃ → X be a birational toric morphism of complete
normal split toric varieties over K. Then (X,M) satisfies M -approximation off T if

and only if (X̃, f−1M) satisfies f−1M -approximation off T .

Proof. This follows directly from combining Proposition 2.2.14 with Corollary 3.1.8.

3.2.1 Monoids in Theorem 1.1.3

In this section we introduce the monoids NM , N
+
M and ρ(K,C), which are used in The-

orem 1.1.3 and Theorem 3.3.5. These monoids indicate how (X ,M)(B) is distributed
in X(K).

Definition 3.2.2. Let (X,M) be a toric pair where X is a complete smooth split
toric variety. Define the homomorphism of monoids

ϕ : Nn → N

(m1, . . . ,mn) 7→
n∑

i=1

minρi .

Define the sublattice

NM = ⟨ϕ(m) |m ∈Mfin,red⟩ ⊂ N,

and the submonoid N+
M generated by nonnegative linear combinations of the same

elements.

The restriction to the reduced part reflects the fact that for every finite place
v ∈ ΩK and a point P ∈ X(Kv), multv(P ) lies in Mred.

Remark 3.2.3. The monoid N+
M is equal to NM if and only if the cone N+

M,R gen-

erated by N+
M is equal to Rd. This will be used in the proof of Theorem 1.1.3.
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For each finite place v, we write

ϕv := ϕ ◦multv : U(Kv)→ N. (3.2.1)

The map ϕv : U(Kv)→ N is a group homomorphism, as the next proposition shows.

Proposition 3.2.4. Let X be a smooth, complete split toric variety. For each finite
place v, we write

ϕv := ϕ ◦multv : U(Kv)→ N. (3.2.2)

The map ϕv : U(Kv) → N defined above is a surjective group homomorphism with
kernel U(Ov), where U ∼= Gd

m is the open torus in X . The homomorphism can be
given in Cox coordinates as

ϕv(u1π
w1 : · · · : unπwn) =

n∑
i=1

winρi ,

where wi ∈ Z, ui ∈ O×
v and π ∈ Ov is a uniformizer. This homomorphism gives a

splitting
U(Kv) ∼= U(Ov)⊕N.

Furthermore, if X̃ is a smooth complete split toric variety and f : X̃ → X is a toric
morphism corresponding to the morphism of lattices f : Ñ → N , then we have ϕv◦f =
f ◦ ϕv. The map ϕv on the left corresponds to the map on the points in X(Kv) and

the map ϕv on the right corresponds to the map on the points in X̃(Kv).
As a consequence if f is birational, then for any toric pair (X,M) there are equal-

ities of monoids N+
M = N+

f∗M and NM = Nf∗M .

Proof. Let P ∈ X(Kv) be a point. Since XΣ has an open cover of affine toric schemes
Vσ = Ad corresponding to maximal cones σ ∈ Σ, P ∈ Vσ(Ov) is satisfied for some
maximal cone σ ∈ Σ. Thus we can represent the the point with Cox coordinates
P = (p1 : · · · : pn) such that pi = 1 if ρi is not a ray of the cone σ. For such a
point P ∈ Ad(Ov) ⊂ XΣ, it follows that nv(Dc

i , P ) = v(pi). Therefore, if we write
pi = uiπ

mi for units u1, . . . , un ∈ O×
v and m1, . . . ,mn ∈ N∗, then ϕv(u1π

m1 : · · · :
unπ

mn) =
∑n

i=1minρi
. We will now prove that this equality is still true even without

the constraints on the pi. By the equality

G(Kv) = {(t1, . . . , tn) |
n∏

i=1

t
⟨ej ,nρi

⟩
i = 1 for all 1 ≤ j ≤ d},

where e1, . . . , ed is a choice of a basis of N∨, we see that (πm1 : · · · : πmn) = (1 : · · · : 1)
if and only if

∑n
i=1minρi = 0. Therefore if (πm1 : · · · : πmn) = (πm′

1 : · · · : πm′
n) then∑n

i=1(mi −m′
i)nρi

= 0 so
∑n

i=1minρi
=
∑n

i=1m
′
inρi

.
Thus we see that

ϕv(u1π
m1 : · · · : unπmn) =

n∑
i=1

minρi ,

for all mi ∈ Z and units ui ∈ O×
v . In particular it is clear that ϕv is a group homo-

morphism with kernel U(Ov).
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The surjectivity follows from the fact that nρ1 , . . . , nρn span N as a lattice, com-
bined with the identity ϕv(1 : · · · : 1 : π : 1 : · · · : 1) = nρi , where i is index of the
coordinate different from 1. The splitting is a direct consequence of the fact that N
is a free abelian group.

For verifying the identity ϕv ◦ f = f ◦ ϕv, it suffices to consider affine opens
Ad′

Ov
⊂ X̃ and Ad

Ov
⊂ X such that f restricts to a morphism Ad′

Ov
→ Ad

Ov
. Now by

comparing this map with the map f , the result directly follows.
The final claim follows from the previous part by noticing that f is just the

identity.

Remark 3.2.5. By Proposition 3.2.4, the description of M-points on projective
space as in Section 2.1.4 generalizes to toric pairs (X,M), with X complete and
smooth, with toric integral model (X ,M). By replacing the homogeneous coordinates
from that section with Cox coordinates, we obtain a description for theM-points on
(X ,M).

Now we can extend the definitions of NM and N+
M to the singular case.

Definition 3.2.6. Let X be a complete normal split toric variety with lattice of
cocharacters N . We define NM = Nf∗M and N+

M = N+
f∗M for any toric birational

morphism f : Y → X, where Y is a complete smooth split toric variety, such that
Di ×X Y is a Cartier divisor for all i ∈ {1, . . . , n}.

Such a Y can always be found by taking g : Z → X to be the successive blowing
up of the Di, so that g−1Di is a Cartier divisor, and then taking Y to be a toric
resolution of singularities of Z.

It follows from Proposition 3.2.4 that NM and N+
M are independent of the choice

of the morphism f , so they are well-defined. This is because for any two resolutions
of singularities of X, there exists a common refinement of both.

Remark 3.2.7. If X is a normal split toric variety such that Cl(X) contains torsion,
then N+

M = N for the trival pair (X,M) = (X, 0). On the other hand, Proposi-
tion 3.1.7 implies that the ray generators nρi

do not generate N , even as a group.
Therefore, it is sometimes necessary to consider a resolution of singularities rather
than directly trying to apply Definition 3.2.2, as that can give monoids which are too
small.

The next notion measures divisibility of the unit group of completions of the field
K.

Definition 3.2.8. For a PF field (K,C) we define ρ(K,C) to be the set of n ∈ N∗

such that the group O×
v is n-divisible for all v ∈ ΩK .

The set ρ(K,C) is a submonoid of N∗ generated by a subset of the prime num-
bers. In order to describe this notion for function fields we introduce the following
definitions:

Definition 3.2.9. Let k be a field and let n > 1 be an integer with char(k) ∤ n. We
say that k is n-closed if one of the following equivalent properties hold:

1. For every finite extension l/k, the degree [l : k] is coprime to n.
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2. For every finite extension l/k, the group l× is n-divisible.

Example 3.2.10. Separably closed fields are n-closed for all n not divided by the
characteristic. For any prime number p and an integer n > 1 with p ∤ n the union
of finite fields

⋃
m≥1 Fpnm is n-divisible. Similarly for a separably closed field k with

char(k) = p and an integer n > 1 with p ∤ n, the field
⋃

m≥1 k((t−1/nm

)) is n-divisible.

Recall that a field k is formally real if there exists an ordering on k and it is
formally Euclidean if this ordering can be chosen such that every nonnegative element
is a square.

Definition 3.2.11. We say that k is hereditarily Euclidean if every formally real
algebraic extension of k is formally Euclidean.

The following lemma allows us to easily compute ρ(K,C) for both number fields
and function fields.

Lemma 3.2.12. For any PF field (K,C), the monoid ρ(K,C) is computed as follows:

1. If K is a number field then ρ(K,C) = 1.

2. If k is a field and K = k(C), where C is a regular curve over k, then a prime
number p belongs to ρ(K,C) if and only if either

(a) p ̸= char(k) and k is p-closed,

(b) or all of the following are satisfied:

� k is a hereditarily Euclidean field,

� p = 2,

� C(k′) = ∅, where k′ is a real closure of k.

Furthermore, for any PF field (K,C), if n ∈ N∗ is an integer such that n ̸∈ ρ(K,C),
then there are infinitely many places v ∈ ΩK such that O×

v is not n-divisible.

Remark 3.2.13. In particular, if K = k(C) with k a finite field, a number field or a
function field (of transcendence degree at least 1), then ρ(K,C) = 1. If on the other
hand, k is separably closed, then ρ(K,C) = {n ∈ N∗ | char(k) ∤ n}. Finally, if k = R,
then ρ(K,C) = {n ∈ N∗ | 2 ∤ n} if C(R) ̸= ∅ and ρ(K,C) = N∗ otherwise.

Proof. We will prove the last statement in tandem with the computation of ρ(K,C).
Note that for this statement we can assume that n = p is a prime. We split up the
proof in two cases, depending on whether K is a number field or a function field. We
first treat the case where K is a number field. For every prime number p there exist
infinitely many prime numbers q ≡ 1 mod p by Dirichlet’s theorem on arithmetic
progressions. For each place v ∈ ΩK above such a prime number q, the group of
units of the residue field k×v is not p-divisible since the order of k×v is divisible by p.
Thus O×

v is not p-divisible either for such v. In particular, O×
v is not p-divisible for

infinitely many places v ∈ ΩK and therefore ρ(K,C) = 1.
Now we treat the case where K is a function field of a curve over a ground field k.

For any place v ∈ ΩK , the completion is given by Ov
∼= kv[[t]], where kv is the residue

field at v. For any f ∈ kv[[t]]× we can write f = ag where a ∈ k×v and g ∈ kv[[t]]×
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has constant coefficient 1. Therefore f is a p-th power if and only if a and g are p-th
powers. If p ̸= char(k), then for any x ∈ kv[[t]] with |x|v < 1 the p-th root p

√
1 + x is

well-defined and lies in kv[[t]]. In particular, since |g − 1|v < 1, g is a p-th power as
long as p ̸= char(k). If on the other hand p = char(k), then 1+t ∈ kv[[t]]× is not a p-th
power. Therefore O×

v is p-divisible if and only if p ̸= char(k) and k×v is p-divisible.
Therefore it follows that p ∈ ρ(K,C) if k is p-closed and p ̸= char(k) since in that

case kv is p-closed for all v ∈ ΩK . Similarly, 2 ∈ ρ(K,C) if k is hereditarily Euclidean
and C(k′) = ∅ for a real closure k′/k, since then kv is 2-closed for all v ∈ ΩK .

For the other direction, we assume that O×
v is p-divisible for all but finitely many

places. We will show p satisfies the conditions given in the statement of the lemma,
and thus in particular p ∈ ρ(K,C).

As we have seen we must have that p ̸= char(k) and that for all but finitely many
places v ∈ ΩK , the group k×v is p-divisible. First we prove that for any field k̃, if k̃
is not p-divisible, but l× is p-divisible for some some finite extension l/k̃, then p = 2
and k̃ is an Euclidean field. If p = 2, then this follows from [EW87, Lemma 2(2)].
Assume therefore that p is odd. Let a ∈ k̃ be an element which is not a p-th power.
Then [Lan02, Theorem 9.1] shows that the polynomial Xpn − a is irreducible over k̃
for every n ≥ 1. Thus if l/k̃ is a finite extension, then Xpn − a does not have a linear
factor over l if pn is larger than the degree of the extension l/k̃. Therefore l× is not
p-divisible either since a is not a pn-th power in l.

Since for any place v ∈ ΩK , kv/k is a finite extension, k× has to be either p-
divisible or p = 2 and k is Euclidean.

Now assume that k× is p-divisible and that k×v is p-divisible for all but finitely
many places v ∈ ΩK , as before. We will show that this implies that k is p-closed.
Since k× is p-divisible, k is not Euclidean if p = 2. If k is not p-closed, then there
exists a finite extension l/k such that l× is not p-divisible. We can factor l/k as a
separable extension l̃/k followed by a totally inseparable extension l/l̃ by [Stacks, Tag
030K]. Since any separable extension of k is simple, l̃ is contained in the residue field
of infinitely many closed points in P1

k. Thus, since there exists a dominant morphism

C → P1
k, there exist infinitely many places v of K for which l̃ ⊂ kv. This implies

that k×v is not p-divisible for infinitely many places v ∈ ΩK , which is a contradiction.
Thus if k× is p-divisible, then l̃× is p-divisible for every separable extension l̃/k.

For any totally inseparable extension l/l̃, any element α ∈ l× has a minimal
polynomial of the form Xqn − αqn for some n ∈ N, where q = char(k) and αqn ∈ l̃×.
Since αqn is a p-th power in l̃, α is a p-th power in l and thus l× is also p-divisible.
Therefore, we see that k is p-closed. By the same argumentation, we also see that if
k is Euclidean, then k is hereditarily Euclidean.

If k is hereditarily Euclidean, but C contains a k′-rational point for its real closure
k′, then C(k′) is infinite since a real closed field is an ample field [Pop96]. Therefore
there are infinitely many places v such that k×v is not 2-divisible.

The next lemma will be used in the proof of Theorem 1.1.3 over function fields.

Lemma 3.2.14. Let k be a field and let C be a projective regular curve over k and
let p ∈ ρ(K,C) be a prime number. Then for any affine open B ⊂ C, Pic(B) is a
p-divisible group.

Proof. We first assume that k is p-closed. Since the statement only depends on p
and on the scheme B, we can as in Remark 1.3.3 assume without loss of generality
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that k is algebraically closed in K, so that B is a geometrically integral curve over k.
The connected component of the identity of the Picard scheme J = Jac(C) is a group
scheme of finite type over k [BLR90, Section 8.2, Theorem 3]. We will first prove
that J(k) is p-divisible. The multiplication-by-p map [p] gives the exact sequence of
G-modules

0→ J(ksep)[p]→ J(ksep)
[p]→ J(ksep)→ 0,

where ksep is the separable closure of k and G = Gal(ksep/k) is the absolute Galois
group of k. By the induced long exact sequence in Galois cohomology, this implies
that J(k) is p-divisible if H1(G, J(ksep)[p]) = 0, which we will now show.

By [Liu06, Chapter 7, Corollary 5.23.], J(ksep)[p] is finite since p is different from
the characteristic. Furthermore every finite quotient of G has order coprime to p,
since k is p-closed. Thus by [Har20, Corollary 1.49] we see that, for any normal
subgroup H ◁ G of finite index, H1(G/H, (J(ksep)[p])H) = 0. Thus the inflation-
restriction exact sequence [Har20, Theorem 1.42] implies that the restriction map
H1(G, J(ksep)[p]) → H1(H,J(ksep)[p])G/H is injective. For every continuous map
G → J(ksep)[p], one of the fibers contains an open neighbourhood of 1 ∈ G, and
therefore a normal subgroup H of finite index. Thus the map of the associated
cohomology class gets sent to 0 by the restriction map. Since the map is injective,
H1(G, J(ksep)[p]) = 0 and thus we see that J(k) is p-divisible.

By applying [BLR90, Section 8.1, Proposition 4] with S = T = Spec k, we have
an exact sequence

0→ Pic0(C)→ J(k)→ Br(k),

where Pic0(C) is the group of isomorphism classes of invertible sheaves on C with
degree 0 and Br(k) is the Brauer group of k. Since k is p-closed, Br(k)[p] = 0, since
there does not exist a central division algebra of degree p over k, as its splitting field
would have degree p over k. Thus it follows that Pic0(C) is also p-divisible.

Since C is geometrically connected, the degree map gives an isomorphism
Pic(C)/Pic0(C) ∼= Z. Since the restriction map Pic(C)→ Pic(B) is surjective, there
is an exact sequence

Pic0(C)→ Pic(B)→ Z/mZ→ 0.

Here m is the greatest common divisor of the degrees of closed points in C \B. The
degree of a closed point on C is not divisible by p, as the residue field of such a divisor
would be an extension of k with degree divisible by p. Therefore p does not divide
m, so Z/pZ is p-divisible and thus Pic(B) is p-divisible.

Now we treat the case where k is not p-closed. As we have seen in Lemma 3.2.12,
this implies that p = 2, k is hereditarily Euclidean and C is a curve with no points
defined over a real closure of k. This implies that every divisor on C defined over k is
of the form D = D′ + σ(D′), where D′ is a divisor defined over the unique quadratic
extension l = k(

√
−1) of k, and σ is the automorphism of l/k that sends

√
−1 to

−
√
−1. As l is 2-closed by [EW87, Lemma 2], it follows by the previous argument

that Pic(Bl) is 2-divisible, so there exists a divisor D′′ over l such that 2D′′ ∼ D′,
and thus we see D ∼ 2(D′′ + σ(D′′)). Therefore Pic(B) is 2-divisible as well.

3.2.2 Squarefree strong approximation on the affine line

In the proof of Theorem 1.1.3, we will need the following definitions.



3.2. M -approximation for split toric varieties 53

Definition 3.2.15. Let R be an Dedekind domain. An element r ∈ R is squarefree
if r is not contained in p2 for any prime ideal p ⊂ R. If R = O(B) for some regular
curve B over a field k, then we call an element r ∈ R separable if it is squarefree in
R⊗k k

′ for every extension k′ of k.

Note that if R = k[t] = O(A1
k), then we recover the familiar notions of squarefree

polynomials and separable polynomials. If k is perfect, then r ∈ O(B) is separable if
and only if it is squarefree.

Before we can carry out the proof of Theorem 1.1.3, we prove a stronger version
of strong approximation on A1 for both global fields and function fields.

Lemma 3.2.16. Let (K,C) be a global field, let S ⊂ ΩK be a finite set of places
containing a distinguished place v0 ∈ S. Let xv ∈ K×

v for v ∈ S, and ϵ > 0. Then
there exist infinitely many pairwise coprime squarefree elements f ∈ O(B) such that

|f − xv|v < ϵ for all v ∈ S \ {v0},

where B = C \ S.
Let T be an integer and assume that v0 is an infinite place if K is a number field.

If |xv0 |v0 is sufficiently large, depending on ϵ, T and |xv|v for v ∈ S \{v0}, then there
exist at least T such f which additionally satisfy

|f − xv0 |v0 < ϵ|xv0 |v0 .

Furthermore, f can be taken to be a prime element if K is a function field and v0
is a k-rational point, or if K is a number field (with no condition on v0). In general,
f can be taken to be the product of two prime elements.

Remark 3.2.17. Note that for K = Q this lemma is just a consequence of the
prime number theorem for arithmetic progressions [BMO+18, Theorem 1.1]. If K is
a number field and if S does not contain an infinite place, then the statement from
the lemma follows from Chebotarev’s density theorem applied to L/K, where L is the
ray class field associated to the modulus∞I (see [Cox22, Chapter 2, §8]), where∞ is
the product of the infinite places and I is the ideal in OK consisting of the elements
x ∈ OK with |x|v < ϵ for all v ∈ S.

Remark 3.2.18. If S contains all infinite places in the setting of Lemma 3.2.16, then
there exist only finitely many coprime elements f ∈ O(B) satisfying |f − xv|v < ϵ for
all v ∈ S \ {v0} and |f − xv0

|v0 < ϵ|xv0 |v0 , since these inequalities imply an upper
bound on the norm of the ideal (f) ∈ B.

Proof. The proof of the lemma uses the language of ideles and mainly relies on [Lan94,
Chapter XV, Theorem 6], which is an equidistribution result that can be viewed as a
generalization of Chebotarev’s density theorem. For more background on ideles and
equidistribution, see [Lan94, Chapter VII] and [Lan94, Chapter XV], respectively.

Denote the idele group of K by J =
∏

v∈ΩK
(K×

v ,O×
v ) and denote the S-idele group

by JS =
∏

v∈ΩK\S O×
v ×

∏
v∈S K

×
v . The norm of an idele a ∈ J is ∥a∥ =

∏
v∈ΩK

|av|v.

We denote the subgroups of elements of norm 1 in J and JS by J0 and J0
S .

The proof is split up in two parts, depending on whether K is a number field or
a function field. While the proofs of these cases differ, they follow the same general
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ideas and both hinge on applying [Lan94, Chapter XV, Theorem 6] to a retraction
ϕ : J→ J0. First we give some generalities common to both proofs.

Step 0. Without loss of generality we can assume that ϵ < minv∈S\{v0}(1, |xv|v).
Choose for each finite place q ∈ Ω<∞

K a uniformizer πq ∈ K× at q. Define the
map τ : Ω<∞

K → J by (τ(q))v = πq if v ̸= q and (τ(q))q = 1. Note that for q ̸∈ S,
τ(q) ∈ K×JS if and only if q is a principal ideal inO(B). This is because τ(p) ∈ K×JS

means that there exists u ∈ K× such that uπq ∈ O×
v for all v ∈ ΩK \ (S ∪ {q}) and

such that u ∈ O×
q , so (uπq) ∈ B is a prime ideal.

Step 1 for number fields: v0 infinite. We assume without loss of generality
that S contains all infinite places. We also first treat the case when v0 is an infinite
place. Define the retraction ϕ : J→ J0 by

ϕ(a)v =

{
av if v ̸= v0,

av/∥a∥1/e if v = v0,

where e = 1 if v0 is real and e = 2 if v0 is complex. We define σ to be the
composition of ϕ with the quotient map J0 → J0/K×. Then σ(J0) = J0/K×,
and σ(K×) = 1. Therefore, by [Lan94, Chapter XV, Theorem 6], Ω<∞

K is λ-
equidistributed in J0/K×, where λ = σ ◦ τ . The map τ here is defined differently
from [Lan94], but the composition yields the same map λ after composing with the
inversion map (·)−1 : J0/K× → J0/K× and therefore the conclusion still follows.

Let

U :=

{
z ∈ J0

S : |zv − xv|v < ϵmin

(
1,
|xv|v
2r+2

)
, ∀v ∈ S \ {v0}

}
∩
{
z ∈ J0

S : | arg(zv0
)− arg(xv0)|v0 <

ϵ

4

}
,

be an open set of J0, where r is the cardinality of S and arg(z) is the principal
argument of z ∈ C×. Note that U is a nonempty open set of J0. Denote the image of
U in J0/K× by U . The maps we have defined together form the following commutative
diagram

U U

Ω<∞
K J J0 J0/K×.τ

λ

ϕ

σ

As the indicator function of U is integrable, a positive density of prime ideals
q ∈ B, ordered by their norms, satisfy λ(q) ∈ U , by the definition of equidistribution
given in [Lan94, page 316]. Since the image of J0

S in J0/K× is K×J0
S/K

×, such prime
ideals are principal as we have seen in Step 0. By the Landau prime ideal theorem
[Lan03, page 670] the number of prime ideals of norm up to X grows asymptotically
as X/ logX. Therefore the number of prime ideals q ∈ B with λ(q) ∈ U of norm
up to X grows asymptotically as cX/ logX for some constant c > 0. Therefore, for
N0 ∈ R sufficiently large, there exist T distinct principal prime ideals q = (q) ∈ B with
λ((q)) ∈ U and of norm (1− ϵ

4 )N0 < N(q) < (1+ ϵ
4 )N0. Note that (ϕ◦τ)(q)v = uq for
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all v ∈ ΩK \{v0, q}, (ϕ◦τ)(q)q = u and (ϕ◦τ)(q)v0 = uq/N(q)1/e, where u ∈ K×∩O×
q

and N(q) =
∏

v∈S |q|v is the norm of q in O(B).

By definition of U , for all prime ideals (q) of O(B) with λ((q)) ∈ U , there exists
u′ ∈ K× such that u(ϕ ◦ τ)(q) ∈ U . This implies that uu′q ∈ O×

v for all v ∈ ΩK \
{v0, q}, uu′ ∈ O×

q and | arg((uq/N(q)1/e)v0) − arg(xv0)|v0
< ϵ

4 . Thus uu′q ∈ O(B),
(uu′q) = (q) and uu′q ∈ U via the natural embedding K× ⊂ J0, since the argument
of uu′q in Kv0

is not affected by scaling by a positive real number. Therefore, we can
choose the prime element q ∈ O(B) to lie in U itself.

Without loss of generality, we assume |xv0 |v0 is sufficiently large so that N0 =∏
v∈S |xv|v is large enough for T pairwise coprime elements q ∈ U to exist. Then we

have

(1− ϵ
4 )|xv0 |v0 <

N(q)∏
v∈S\{v0} |xv|v

< (1 + ϵ
4 )|xv0 |v0 , (3.2.3)

for such p ∈ U .

The triangle inequality implies
∣∣∣ q
xv

∣∣∣
v
−1 ≤

∣∣∣ q
xv
− 1
∣∣∣
v
≤
∣∣∣ q
xv

∣∣∣
v

+1 and by combining

this with the definition of U we find 1− ϵ
2r+2 <

|q|v
|xv|v < 1 + ϵ

2r+2 for v ∈ S \ {v0}, and

thus

1− ϵ
8 <

∏
v∈S\{v0}

|p|v
|xv|v

< 1 + ϵ
8 . (3.2.4)

By combining the inequalities (3.2.3) and (3.2.4), we obtain(
1− ϵ

2

)
|xv0 |v0 < |q|v0 <

(
1 +

ϵ

2

)
|xv0 |v0 .

If v0 is real, then the inequalities on the argument show that v0(q) has the same sign

as xv0 so
∣∣∣ q
xv0
− 1
∣∣∣
v0

< ϵ
2 . If v0 is complex, then the inequalities on the argument

show∣∣∣∣ qxv0 − 1

∣∣∣∣
v0

<
∣∣∣(1 +

ϵ

2

)
eϵi/4 − 1

∣∣∣2 < ( ϵ
2

+
(

1 +
ϵ

2

) ϵ
4

+

∞∑
n=2

(ϵ/4)n

n!

)2

< ϵ2 < ϵ.

This proves the existence of T coprime prime elements f = q ∈ U satisfying the second
condition of the lemma and by definition of U , they also satisfy the first condition.

Step 2 for number fields: v0 finite. Now we will prove the lemma when K is
a number field and v0 is a finite place. We will derive this from the previously treated
case when v0 was infinite by choosing an infinite place v′ ∈ S and by letting it play
the role of v0 so that we can apply the previously proven case of the lemma. By the
generalization of Dirichlet’s unit theorem to S-integers [Nar04, Theorem 3.12], there
exists u ∈ O(B)× with |u|v = 1 for all finite places v ∈ Ω<∞

K \ {v0} and positive
valuation at v0. Therefore by the product formula there exists an infinite place v′

such that |u|v′ > 1, and by taking powers of we can take |u|v′ to be larger than any
given bound.

For ϵ′ > 0 and any integer R > 0, if |u|v′ is sufficiently large, the part of the lemma
proven in Step 1 implies that we can find R pairwise coprime prime elements q ∈ OS

such that |q−uxv|v < ϵ′ for all places v ∈ S\{v0, v′} and |q−uxv′ |v′ < ϵ′|uxv′ |v′ . If we
set f = q/u, then |f−xv|v < ϵ′ for all places v ∈ S \{v0, v′} and |f−xv′ |v′ < ϵ′|xv′ |v′ .
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As T was arbitrary, this implies that for every ϵ > 0 there exist infinitely many
pairwise coprime prime elements f ∈ O(B) such that |f −xv|v < ϵ for all v ∈ S \{v0}
since we can take ϵ′ = ϵ/max(1, |xv′ |v′).

Step 1 for function fields: v0 a rational point. Now we will prove the
statement for global function fields using a similar strategy as for number fields,
relying on [Lan94, Chapter XV, Theorem 6]. While this theorem is formulated for
number fields, the statement is true for global fields. This is because the proof of this
result relies on Theorems 1, 2, 3 and 5 as well as Proposition 1 in [Lan94, Chapter
XV]. Theorem 1 and Proposition 1 are purely analytic statements, not involving
number fields, while Theorem 2, 3 and 5 are true over global fields using the same
argumentation as given in the book. As noted in Remark 1.3.3, we can take k to be
the field of constants of C so that C is geometrically integral.

We will first assume that v0 is a k-rational point and prove the general case
afterwards. Let l be the cardinality of k and define the retraction ϕ : J→ J0 by

ϕ(a)v =

{
av if v ̸= v0,

av/π
logl ∥a∥
v0 if v = v0,

where πv0 ∈ Ov0 is a uniformizer and ∥a∥ is the norm of a. We define σ to be the
composition of ϕ with the quotient map J0 → J0/K×, as in the case for number
fields. Then σ(J0) = J0/K×, and σ(K×) = 1.

Therefore we can use [Lan94, Chapter XV, Theorem 6] as in Step 1 for number
fields to conclude that ΩK is λ-equidistributed in J0/K×, where λ = σ ◦ τ .

For any b ∈ K×
v0 satisfying |b|v0

∏
v∈S\{v0} |xv|v = 1, define the nonempty open

subset

Ub :=

{
z ∈ J0

S :
|zv − xv|v < ϵ, ∀v ∈ S \ {v0}
|zv0 − b|v0 < ϵ/

∏
v∈S\{v0} |xv|v

}
and denote its image in J0/K× by U b. As in the proof for number fields, the maps
defined fit into the following commutative diagram

Ub U b

Ω<∞
K J J0 J0/K×.τ

λ

ϕ

σ

Note that (ϕ◦τ)(q)v = uq for all v ∈ ΩK \{v0, q}, (ϕ◦τ)(q)q = u and (ϕ◦τ)(q)v0
=

uq/π
logl N(q)
v0 , where u ∈ K× ∩ O×

q and N(q) =
∏

v∈S |q|v is the norm of q in O(B).
Let n ≥ 1 be an integer. By the Hasse-Weil bound [Poo17, Corollary 7.2.1] for

B over Fln , O(B) has at least ln + O(ln/2) prime ideals of norm ln, where implied
constant depends on C but not on n. Thus if n is sufficiently large, then for every
b ∈ K×

v0 with |b|v0
∏

v∈S\{v0} |xv|v = 1 there exist at least T pairwise coprime primes

q = (q) of norm ln with λ(q) ∈ U b. In particular, if |xv0 |v0 is sufficiently large, then
there exists at least T pairwise coprime primes q = (q) of norm

∏
v∈S |xv|v with

λ(q) ∈ U b.
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By definition of U b, for all prime ideals (q) of O(B) with λ((q)) ∈ U b, there
exists u′ ∈ K× such that u(ϕ ◦ τ)(q) ∈ Ub. This implies that for all uu′q ∈ O×

v

for all v ∈ ΩK \ {v0, q}, uu′ ∈ O×
q and |uu′q/πlogl N(q)

v0 − b|v0 < ϵ/
∏

v∈S\{v0} |xv|v.

This implies that uu′q ∈ O(B) and (uu′q) = (q). Furthermore, if (q) has norm

N(q) =
∏

v∈S |xv|v, this implies that |uu′q − bπlogl N(q)
v0 |v0 < ϵ|xv0

|v0
In particular, by taking b = xv0π

− logl

∏
v∈S |xv|v

v0 it follows that there exist T
coprime prime elements f = q ∈ OS with |f − xv|v < ϵ for v ∈ S \ {v0} and
|f − xv0 |v0 < ϵ|xv0 |v0 .

Step 2 for function fields: v0 not a rational point. Now it remains to
consider the case where v0 is not a k-rational point. By the Hasse-Weil bound, there
exists a place v′ ∈ ΩK \ S such that gcd(deg(v),deg(v′)) = 1 for every v ∈ S. For

v ∈ S choose a factorisation xv = c
deg(v0)
v d

deg(v′)
v where cv, dv ∈ K×

v and such that

0 ≤ −v(dv) < deg(v0) and thus |dv|v ≥ 1. Let k̃ be the splitting field of the closed

point v′ and let K̃ be the fraction field of Ck̃. Denote the complement of S ⊔ {v′}
in C by B′. For every place in S there is a unique place ṽ ∈ ΩK̃ lying above it, by

the coprimality assumption. Let S̃ be the set of places in ΩK̃ above the places in S.
Every place ṽ′ ∈ ΩK̃ above v′ has degree 1 and thus corresponds to a rational point
on B′

k̃
. As we already know that the statement is true if v0 is a rational point, we can

apply the lemma to Ck̃, where B′
k̃

plays the role of B and ṽ′ plays the role of v0, for

some choice of ṽ′ ∈ ΩK̃ above v′. Therefore, for every ϵ2 > 0 we can find T coprime
prime elements q̃ ∈ O(B′

k̃
) such that for every place v ∈ S, we have

|q̃ − dv|ṽ < ϵ2.

By taking ϵ2 < min(|dv|ṽ, 1), we ensure that |q̃|ṽ = |dv|ṽ = |dv|deg(v
′)

v .
By the Hasse-Weil bound O(B′

k̃
) has ln + O(ln/2) prime ideals of norm ln lying

above completely split primes in O(B′). This is because the Hasse-Weil bound im-
plies that the number of primes ideals in O(B′

k̃
) of norm ln lying above primes in

O(B′) which are not completely split is bounded from above by
∑

d|n
(
ld +O(ld/2)

)
.

Therefore the prime element q̃ can be chosen such that q2 := q̃σ(q̃) . . . σdeg(v′)−1(q̃)

is a prime element in O(B′), where σ is a generator of Gal(k̃/k). Note furthermore
that for all v ∈ S and a ∈ K̃, we have |σ(a)|ṽ = |a|ṽ, since ṽ is the unique place above
v. Therefore, by the ultrametric triangle inequality, there exist T coprime prime
elements q2 ∈ O(B′) such that

|q2 − ddeg(v
′)

v |deg(v
′)

v = |q2 − ddeg(v
′)

v |ṽ
≤ max(|q̃σ(q̃) . . . σdeg(v′)−2(q̃)dv − q2|ṽ, . . . ,

|ddeg(v
′)

v − q̃ddeg(v
′)−1

v |ṽ)

< ϵ2

deg(v′)−1∏
i=0

|σi(q̃)|ṽ/min(|q̃|ṽ, . . . , |σdeg(v′)−1(q̃)|ṽ)

= ϵ2|q̃|deg(v
′)−1

ṽ = ϵ2|q2|deg(v
′)−1

v

for all v ∈ S.
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By the same reasoning, for every ϵ1 > 0 and sufficiently large |cv0 |v0 , there also
exist T pairwise coprime prime elements q1, pairwise coprime to the chosen prime
elements q2, with

|q1 − cdeg(v0)v |deg(v0)v < ϵ1|q1|deg(v0)−1
v for all v ∈ S

and
|q1 − cdeg(v0)v0 |deg(v0)

v0 < ϵ1|q1|deg(v0)v0 ,

and |q1q2|v′ = 1. Hence f := q1q2 is a squarefree element in O(B).
Note that for all v ∈ S the ultrametric triangle inequality implies

|f − xv|v = |q1q2 − cdeg(v0)v ddeg(v
′)

v |v ≤ max(|q2|v|q1 − cdeg(v0)v |v, |q1|v|q2 − ddeg(v
′)

v |v).

Combining this inequality with the inequalities on |q1 − cdeg(v0)
v |v and |q2 − ddeg(v

′)
v |v

gives

|f − xv|v ≤ |xv|v max
(
ϵ1|q1|−1/ deg(v0)

v , ϵ2|q2|−1/ deg(v′)
v

)
≤ |xv|v max

(
ϵ1|q1|−1/ deg(v0)

v , ϵ2

)

for v ∈ S \ {v0} and

|f − xv0 |v0 ≤ |xv0 |v0 max
(
ϵ1, ϵ2|q2|−1/ deg(v′)

v0

)
≤ |xv0 |v0 max(ϵ1, ϵ2).

In particular if we choose

ϵ1 = ϵ/ max
v∈S\{v0}

(1, |xv|v|q1|−1/ deg(v0)
v )

and
ϵ2 = ϵ/ max

v∈S\{v0}
(1, |xv|v)

then f is a squarefree element in O(B) satisfying the desired conditions and by varying
the choices for q1 and q2 there are at least T pairwise coprime elements f satisfying
the conditions.

Now we prove the analogous statement for function fields of a curve over an infinite
field.

Lemma 3.2.19. Let K be a function field of a regular projective curve C over an
infinite field k and let S ⊂ ΩK be a finite set of places containing a distinguished
place v0 ∈ S. For v ∈ S Let xv ∈ K×

v and let ϵ > 0. Then there exist infinitely many
pairwise coprime separable elements f ∈ O(B) such that

|f − xv|v < ϵ for all v ∈ S \ {v0},

where B = C\S. Furthermore, if |xv0 |v0 is sufficiently large, depending on ϵ and |xv|v
for v ∈ S \ {v0}, then there exist infinitely many such f which additionally satisfy

|f − xv0 |v0
< ϵ|xv0 |v0 .
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Proof. For v ∈ S we write Dv for the divisor on C associated to the place v and g(C)
for the genus of C. Let n > 0 be some integer such that p−n < ϵ, where p = char(k) if
k has positive characteristic and p = 2 if k has characteristic 0. For an integer m > 0
and a place v ∈ S \ {v0}, we write

D̃v,m = mDv0 − v(xv)Dv −
∑

ṽ∈S\{v0,v}

nDṽ.

For every place v ∈ S \ {v0}, Riemann-Roch [Liu06, Theorem 7.3.26] implies
h0(D̃v,m) = deg(D̃v,m)−g(C)+1 and h0(D̃v,m−Dv) = deg(D̃v,m)−deg(Dv)−g(C)+1,

as long as deg(D̃v,m)− deg(Dv) > 2g(C)− 2. This inequality is satisfied whenever m
is large enough, so for such m we have

h0(D̃v,m)− h0(D̃v,m −Dv) ≥ deg(Dv) ≥ 1.

Therefore there exists an element h̃v ∈ OC(D̃v,m) \ OC(D̃v,m −Dv) ⊂ O(B), which

therefore satisfies v(h̃v) = v(xv) and |h̃v|ṽ < ϵ for all ṽ ∈ S \ {v0, v}. Furthermore
we have |h̃v|v0 ≤ p−m deg(Dv0

) < ϵ|xv0 |v0 whenever |xv0 |v0
is sufficiently large. The

divisor
D̃v0 = −v0(xv0)Dv0 −

∑
v∈S\{v0}

nDv

is very ample if |xv0 |v0 is sufficiently large, as this implies that −v(xv0) is a large
positive integer, so in the same manner we construct h̃v0 ∈ O(B) with v0(h̃v0) =
v0(xv0) and |h̃v0 |v < ϵ for all v ∈ S \ {v0}.

For any v ∈ S we have the inequality v(xv − cvh̃v) < v(xv) for some cv ∈ k×.
For v ∈ S \ {v0}, by applying the the above construction of h̃v to xv − cvh̃v instead
of xv we iteratively construct h̃v,1, . . . , h̃v,r ∈ O(B) and cv,1, . . . , cv,r ∈ k× such that

|h̃v,1|ṽ, . . . , |h̃v,r|ṽ < ϵ for all ṽ ∈ S \ {v0, v}, |h̃v,1|v0 , . . . , |h̃v,r|v0 < ϵ|xv0 |v0 and

v

(
xv −

j∑
i=1

cv,ih̃v,i

)
< v

(
xv −

j−1∑
i=1

cv,ih̃v,i

)

for all j ∈ {1, . . . , r}. By taking r = v(xv) + n and by setting

hv =

r∑
i=1

cv,ih̃v,i ∈ O(B),

the ultrametric triangle inequality implies |hv|ṽ < ϵ for all ṽ ∈ S \ {v, v0}, |hv|v0 <
ϵ|xv0 |v0 and |hv − xv| < ϵ.

In this manner, we also construct hv0 ∈ O(B) with |hv0 |v < ϵ for all v ∈ S \ {v0}
and |hv0−xv0 |v0 < ϵ|xv0 |v0 . If we write h =

∑
v∈S hv then it follows that |h−xv|v < ϵ

for all v ∈ S \ {v0} and |h− xv0 | < ϵ|xv0 |v0 . So now we have found an h ∈ O(B) with
the desired properties, except for the fact that h need not be separable. We resolve
this by slightly perturbing h, by adding a function to it with small valuations at the
places v ∈ S.

In a similar way as before we use Riemann-Roch to construct g ∈ O(B) satisfying
|g|v < ϵ for all v ∈ S \ {v0} and |g|v0 < ϵ|xv0 |v0 , whenever |xv0 |v0 is sufficiently large,
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such that h and g do not share any zeroes. Additionally, we construct g such that
deg(g) is not divisible by the characteristic of k and such that deg(g) > deg(h). Then
the closed subscheme

X = {h+ tg = 0} ⊂ B ×k A1
k

is integral, since h and g do not share any zeroes. The projection morphism π : X →
A1

k has degree coprime to the characteristic and is therefore separable. By generic
flatness [Stacks, Tag 052A], there exists an nonempty open V ⊂ A1

k such that the
restriction X ×A1

k
V → V of π is flat. Therefore, [Spr98, Proposition 2.4(1)] implies

there exists a nonempty open U ⊂ A1
k such that the fiber π−1(c) is geometrically

regular for all c ∈ U . In particular, since k is infinite, there exist infinitely many
c ∈ k such that for f = h+ cg ∈ O(B) the scheme div(f)∩B is geometrically regular,
which proves that f is separable. Furthermore, any two different choices of c ∈ k
yield functions f and f̃ which are coprime to each other.

3.2.3 Proof of Theorem 1.1.3

In this section we prove Theorem 1.1.3, and thus completely characterize when a toric
pair (X,M) satisfies M -approximation off a finite set of places T . We will treat the
cases T ̸= ∅ and T = ∅ separately.

By Corollary 3.2.1 we can assume without loss of generality that X is smooth.
Furthermore, by Proposition 2.2.11 and Proposition 2.2.6 we can also assume and
M = Mfin. We additionally assume without loss of generality that M = Mred.

The pair (X,M) satisfies M -appproximation off T if and only if for every finite set
of places S containing T ∪Ω∞

K , any choice of a point Qv = (qv,1 : · · · : qv,n) ∈ X(Kv)
and any analytic open neighborhood Qv ∈ Vv for every v ∈ S \ T , there exists a
rational point Q = (q1 : · · · : qn) ∈ X(K) such that Q ∈ (X ,M)(B) and Q ∈ Vv for
every v ∈ S \ T . Here B = ΩK \ S and (X ,M) is the toric integral model of (X,M)
over B. We will write d for the dimension of X, U ∼= Gd

m,Z for the open torus in X
and U for its base change to K.

Proof of sufficiency of the conditions. We will first show that (X,M) satisfies M -
approximation off T if T ̸= ∅ and |N : NM | ∈ ρ(K,C) or T = ∅ and N = N+

M .
The majority of the proofs of the two cases are the same, with only the last part of
the proofs differing. The Cox morphism π : Y → X , introduced in Section 3.1, induces
for every v ∈ S \ T a continuous map Y(Kv)→ X (Kv). Therefore, there exists ϵ > 0
such that if for any Q = (q1 : · · · : qn) ∈ X(K) is a point such that |qi−qv,i|v < ϵ|qv,i|v
for all i ∈ {1, . . . , n} and v ∈ S \ T , then Q ∈ Vv for all v ∈ S \ T .

We will now show that we can reduce to the case where multv(Qv) ∈ NM for all
v ∈ S \ T . If ρ(K,C) = {1} or T = ∅, then this is trivially true since then NM = N .
In particular, we only need to show this when K is a function field.

If K is a function field, Lemma 3.2.14 implies that Pic(C \ T ) is |N : NM |-
divisible. This means that for every divisor D on C \ T , there is u ∈ K× such that
D + div u = |N : NM |D′ for some divisor D′ on C \ T . Therefore, there exists
u = (u1 : · · · : un) with u1, . . . , un ∈ K× such that multv(u1qv,1 : · · · : unqv,n) ∈ NM

for all v ∈ S \ T and multv(u) ∈ NM for all v ∈ Ω<∞
K \ S. Let S′ be the finite set

consisting of the places in S together with all places v for which multv(u) ̸= 0. For
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v ∈ S \ T , we set
Q′

v = (u1qv,1 : · · · : unqv,n)

and V ′
v = uVv, and set Q′

v = u and V ′
v = uU(Ov) for v ∈ S′ \ S, where the multipli-

cation is done coordinate-wise. If there exists Q′ ∈ (X ,M)(B′), where B′ = C \ S′,
such that Q′ ∈ V ′

v for all v ∈ S, then Q = u−1Q′ ∈ U(Ov) for all v ∈ S′ \S. Therefore
Q satisfies Q ∈ (X ,M)(B) and Q ∈ Vv for all v ∈ S, as desired.

If K is a number field, we simply let S′ = S, Q′
v = Qv and V ′

v = Vv for v ∈ S \ T .
Choose m1, . . . ,ml ∈ M such that ϕ(m1), . . . , ϕ(ml) generate NM as a lattice.

If T = ∅ and N+
M = N assume furthermore that they generate N as a monoid. Let

G ∼= Gn−d
m,Z be the torus as in Section 3.1 and let πv ∈ Ov be a uniformizer for all

v ∈ S \ T . For a place v ∈ S \ T , we are going to construct cm1,v, . . . , cml,v ∈ K×
v

such that we have

l∏
s=1

(c
ms,1
ms,v : · · · : cms,n

ms,v) = Q′
v = (q′v,1 : · · · : q′v,n), (3.2.5)

in Cox coordinates, where the multiplication is defined coordinate-wise. This is equiv-
alent to the existence of (t1, . . . , tn) ∈ G(Kv) for which

l∏
s=1

(c
ms,1
ms,v, . . . , c

ms,n
ms,v) = (t1, . . . , tn) · (q′v,1, . . . , q′v,n),

where the products are again defined by coordinate-wise multiplication.
By the definition of G this is equivalent to

n∏
i=1

((
l∏

s=1

c
ms,i
ms,v

)
/q′v,i

)⟨nρi
,ej⟩

= 1

for every j = 1, . . . , d, where {e1, . . . , ed} is a basis of N . This, in turn is equivalent
to

l∏
s=1

c
⟨ϕ(ms),ej⟩
ms,v =

n∏
i=1

q′v,i
⟨nρi

,ej⟩

for every j = 1, . . . , d. If we write γj,s = ⟨ϕ(ms), ej⟩ and aj =
∏n

i=1 q
′
v,i

⟨nρi
,ej⟩ this

equation becomes
l∏

s=1

c
γj,s
ms,v = aj .

The d × l matrix Γ with entries γj,s induces a group homomorphism ΓKv : (K×
v )l →

(K×
v )d ∼= U(Kv) given by

(c1, . . . , cl) 7→

(
l∏

s=1

cγ1,s
s , . . . ,

l∏
s=1

c
γd,s
s

)
,

where the latter isomorphism is given by the choice of basis of N . Since
ϕ(m1), . . . , ϕ(ml) span NM and |N : NM | ∈ ρ(K,C), this homomorphism restricts
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to a surjective group homomorphism (O×
v )l → (O×

v )d. Since K×
v
∼= Z × O×

v , the

image of ΓKv
is exactly the points Q̃ ∈ U(Kv) for which multv(Q̃) ∈ NM . Since

multv(qv,1 : · · · : qv,n) ∈ NM for all v ∈ S \ T , for each place v ∈ S \ T we can find
cm1,v, . . . , cml,v ∈ K×

v satisfying condition (3.2.5).
Now we distinguish between whether T ̸= ∅ or T = ∅. If T ̸= ∅, then by Lemma

3.2.16 if K is a global field and by Lemma 3.2.19 if K is another function field, we can
find coprime squarefree elements cm1

, . . . cml
∈ O(B) such that |cmi

/cmi,v − 1|v <

ϵ
(∑l

s=1ms,i

)−1

and |cmi
|v ≤ |cmi,i|v for every v ∈ S \ T .

Therefore if we take Q′ = (q′1, . . . , q
′
n) ∈ (X ,M)(B) where

q′i =

l∏
s=1

c
ms,i
ms ∈ O(B),

then |q′i− q′v,i|v = |
∏l

s=1 c
ms,i
ms −

∏l
s=1 c

ms,i
ms,v|v < ϵ|q′v,i|v. Here we used the elementary

fact that for any tuple a1, . . . , ar ∈ Kv with |ai|v ≤ 1, we have |
∏r

i=1 ai − 1|v ≤∑r
i=1 |ai − 1|v. Therefore (3.2.5) implies that Q′ ∈ V ′

v for all v ∈ S′ \ T , as desired.
Now we assume T = ∅ and we assume N = N+

M . Without loss of generality we
assume that S contains a place v0, which is an infinite place if K is a number field.
Since ϕ(m1), . . . , ϕ(ml) generate N as a monoid, there exist integers d1, . . . , dl > 0

such that
∑l

i=1 diϕ(mi) = 0. Therefore for the place v0 ∈ S we can rescale the
constants cmi,v0 to c̃mi,v0 := rCdicmi,v0 for some integer C > 0 and r ∈ Kv0 with
|r|v0 > 1, without changing the Kv0-rational point defined, since in the torus we have

l∏
k=1

(
c
mk,1
mk,v0 : · · · : cmk,n

mk,v0

)
=

l∏
k=1

((
rCdkcmk,v0

)mk,1
: · · · :

(
rCdkcmk,v0

)mk,n
)

=

l∏
k=1

(
c̃
mk,1
mk,v0 : · · · : c̃mk,n

mk,v0

)
where the products are defined by the action of the torus on itself. Therefore for every
ϵ > 0, by taking C large enough we can apply the stronger form of Lemma 3.2.16 for
global fields and Lemma 3.2.19 for other function fields to get a lifting cmi ∈ O(B)
satisfying

|cmi
/cmi,v − 1|v < ϵ

(
l∑

s=1

ms,i

)−1

for every v ∈ S \ {v0} as before, but with the additional condition that

|cmi

(
cmi,vr

Cdi
)−1 − 1|v < ϵ

(
l∑

s=1

ms,i

)−1

.

Thus if we define Q′ = (q′1 : · · · : q′n) ∈ (X ,M)(B) where

q′i =

l∏
k=1

c
mk,i
mk ,
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as before, then Q′ ∈ V ′
v for all v ∈ S when ϵ is chosen sufficiently small. Therefore

(X,M) satisfies M -approximation.

Proof of necessity of |N : NM | ∈ ρ(K,C) when Pic(C) is finitely generated and T ̸= ∅.
Now we will prove that if Pic(C) is finitely generated and |N : NM | ̸∈ ρ(K,C), then
(X,M) does not satisfy M -approximation off T for any finite set of places T ⊂ ΩK .
Since Pic(C) is finitely generated, we can find a finite set of places S ⊂ ΩK containing
the infinite places such that B = ΩK \ S satisfies Pic(B) = 1. We will show that this
implies that for every finite set of places T ⊂ S, the toric integral model (X ,M)
does not satisfy integral M-approximation off T . By Proposition 2.2.12, this in turn
implies that (X,M) does not satisfy M -approximation off T . Since every finite set
of places T is contained in a subset S with Pic(B) = 1, (X,M) does not satisfy
M -approximation off T for every finite set of places T .

Let m1, . . . ,ml generate NM as before in the proof of the sufficiency of the condi-
tion. Additionally, we first assume that |N : NM | is not a power of the characteristic
of K. By Proposition 3.2.4, the image of the set (X ,M)(B) ⊂ X(K) is contained in
the image of the map

U(B)× (O(B) \ {0})l → X(K)

given by

((u1 : · · · : un), (a1, . . . , al)) 7→

(
u1

l∏
i=1

a
mi,1

i : · · · : un
l∏

i=1

a
mi,n

i

)
,

where U ∼= Gd
m,Z is the open torus in X . In particular, if (X ,M) were to satisfy

integral M-approximation off T , then the induced map

gS′ : U(B)×
∏
v∈S′

(k×v )l →
∏
v∈S′

U(kv)

would be surjective for any finite set of places S′ ⊂ ΩK \ S.
As in the proof of the sufficiency of N = NM for M -approximation off T , let

{e1, . . . , ed} be a basis of N and Γ be the d × l matrix with coefficients γj,s =
⟨ϕ(ms), ej⟩. The isomorphism N ∼= Zd induced by the choice of this basis induces an
isomorphism U(kv) ∼= (k×v )d for all v ∈ ΩK . Under this isomorphism, the homomor-
phism (k×v )l → U(kv)

(a1, . . . , al) 7→

(
l∏

i=1

a
mi,1

i : · · · :
l∏

i=1

a
mi,n

i

)

is given by the homomorphism Γkv
: (k×v )l → (k×v )d induced by the matrix Γ. Since

|N : NM | ̸∈ ρ(K,C), Γkv
is not surjective for infinitely many choices of v ∈ ΩK .

If K is a global field, then U(B) is finitely generated, say by t elements. Then gS′

cannot be surjective for any finite set of places S′ containing strictly more than t
places v ∈ ΩK \ S for which Γkv

is not surjective.
Now assume that K is a function field of a curve C over a field k. If gS′ is

surjective, then the induced homomorphism

{f ∈ U(B) | f(v′) = (1 : · · · : 1)} ×
∏

v∈S′\{v′}

(k×v )l →
∏

v∈S′\{v′}

U(kv)
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is also surjective, where f(v′) is the image of f in U(kv′). We now give an analogous
argument as for global fields. The group {f ∈ U(B) | f(v′) = (1 : · · · : 1)} injects
into U(B)/U(k), since if f(v′) = (1 : · · · : 1) and g ∈ U(k) \ {(1 : · · · : 1)}, then

(f · g)(v′) ̸= (1 : · · · : 1). Therefore, since U(B)/U(k) ∼= (O(B)×/O(k)×)
d

is finitely
generated, the group {f ∈ U(B) | f(v′) = (1 : · · · : 1)} is finitely generated as well.
Suppose that it is generated by t elements, then gS′ cannot be surjective as soon as
it contains strictly more than t+ 1 places v for which Γv is not surjective.

Finally, if |N : NM | is a power of the characteristic of K, the argument given above
might not work, since in this case Γkv

could be surjective for all v ∈ ΩK . However there
are still infinitely many places v ∈ ΩK such that the map (O×

v )l → (O×
v )d induced

by Γ is not surjective. Therefore, the argument is easily amended by replacing the
role of kv by Ov/π

nv
v for these places v, where πv is a uniformizer and nv is the least

positive integer such that the homomorphism ((Ov/π
nv
v )×)l → ((Ov/π

nv
v )×)d is not

surjective.

Proof of necessity of N = N+
M when T = ∅. Now we will show that if (X,M) satisfies

M -approximation, then N+
M = N . We argue by contradiction and assume N+

M ̸= N .
Then we have NM ̸= N or N+

M,R ̸= N ⊗ZR, where N+
M,R is the convex cone generated

by N+
M . This follows from the fact that N+

M,R = N ⊗Z R implies that N+
M contains a

lattice of finite index in N , so combined with NM = N this gives N+
M = N .

First we assume N ̸= NM . If K is a global field, then we have seen that this as-
sumption implies that (X,M) does not satisfyM -approximation off T for T nonempty,
since then ρ(K,C) = 1. Thus we assume that K is a function field of a curve, and
we consider the map U(K) → N given by P 7→

∑
v∈ΩK

ϕv(P ), where ϕv is defined
as in (3.2.1). By Proposition 3.2.4 this map is identically zero, as deg div(f) = 0 in
Pic(C) for any f ∈ K×. Furthermore, if P ∈ (X ,M)(Ov) for some place v ∈ Ω<∞

K ,
then ϕv(P ) ∈ NM by definition of NM . In particular, if ϕv′(Qv′) = 0 for some place
v′ ∈ S and a ∈ N \NM , and ϕv(Qv) = 0 for all v ∈ S \ {v′}, then these points cannot
be all simultaneously well approximated by some Q ∈ (X ,M)(B). This is because
the equality ϕv(Q) = ϕv(Qv) for all v ∈ S is incompatible with

∑
v∈ΩK

ϕv(Q) = 0.
Thus (X,M) does not satisfy M -approximation.

Now we assume N+
M,R ̸= N ⊗Z R. The cone N+

M,R is contained in some half space
H of N ⊗Z R, which is given as

H =

{
d∑

i=1

xiei

∣∣∣∣∣
d∑

i=1

aixi ≥ 0

}
⊂ N ⊗Z R,

where the e1, . . . , ed form a basis of N and a1, . . . , ad ∈ R, not all zero.
Let S be a nonempty set of places containing Ω∞

K and let Q ∈ (X ,M)(B). Un-
der the isomorphism U(K) ∼= (K×)d induced by the choice of basis of N given
above, we can write Q = (x1, . . . , xd) ∈ (K×)d. Since Q ∈ (X ,M)(B), we have

by Proposition 3.2.4 that
∑d

i=1 aiv(xi) ≥ 0 for every i ∈ {1, . . . , d} and every place
v ∈ ΩK \ S. Furthermore, the product formula gives

∏
v∈ΩK

|xi|v = 1 and thus we

see
∏

v∈S

∏d
i=1 |xi|ai

v ≥ 1. However for v ∈ S, we can consider points Qv ∈ X(Kv)

which are sent to (xv,1, . . . , xv,d) ∈ (K×
v )

d
under the isomorphism induced by N ,
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such that
∏

v∈S

∏d
i=1 |xv,i|ai

v < 1
2 . Such a tuple (Qv)v∈S cannot lie in the clo-

sure of the map (X ,M)(B) →
∏

v∈S U(Kv), and hence (X,M) does not satisfy
M -approximation.

3.2.4 Integral M-approximation on toric varieties

For completeness, we also characterize when integral M-approximation holds on a
toric variety.

Proposition 3.2.20. Let X be a complete normal split toric variety and let T ⊂ ΩK

be a finite set of places. If (X,M) satisfies M -approximation off T , then the toric
integral model (X ,M) satisfies integralM-approximation off T if and only if Mred is
contained in the closure of Mfin.

Proof. By Proposition 2.2.12, (X ,M) satisfies integralM-approximation off T if and
only if (X ,Mfin)(Ov) is dense in (X ,M)(Ov) for all v ∈ ΩK \ T and by Corollary
3.2.1 we can assume X is smooth. By Proposition 2.1.2 multv is continuous, so
a point P ∈ (X ,M)(Ov) can only lie in the closure of (X ,Mfin)(Ov) if multv(P )
lies in the closure of Mfin. Since the image of (X ,M)(Ov) under multv is Mred,
this shows that integral M-approximation off T can only hold if Mred is contained
in the closure of Mfin. Conversely, if P = (a1π

m1 : · · · : anπ
mn) with π ∈ Ov a

uniformizer, a1, . . . , an ∈ O×
v , and (m1, . . . ,mn) ∈ Mfin, we can choose a sequence

((m1,j , . . . ,mn,j))j∈N in Mfin converging to (m1, . . . ,mn). By setting Pj = (a1π
m1,j :

· · · : anπ
mn,j ) ∈ (X ,Mfin)(Ov) we obtain a sequence converging to P , finishing the

proof.

3.3 The M-Hilbert property and split toric vari-
eties

While the previous section considered the situation where M-points are plentiful,
in this section we will consider when the set of such points is thin. We will also
investigate the different degrees of thinness that these sets have. For example, by
Dirichlet’s unit theorem [Nar04, Theorem 3.12], Gm(OK) is finitely generated if K is
a number field, while the set of squares in Gm(K) is not finitely generated as a group.
Therefore, the former can be thought of as ‘thinner’ than the latter. We introduce
several variants of thinness, which allows us to make this idea precise.

Definition 3.3.1. Let X be an integral variety over K, let A ⊂ X(K) and let d > 1
be an integer. We say that A is of type II(d) if there is an integral variety Y with
dimY = dimX and a generically finite morphism f : Y → X of degree ≥ d such that
A ⊂ f(Y (K)). We say that A is d-thin if it is a finite union of sets of type I and II(d),
where type I is defined as in Definition 2.2.16. We say that A is strictly d-thin if the
morphisms f have degree exactly d.

We also introduce a notion of thinness which is preserved under taking inverse
images of dominant morphisms.
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Definition 3.3.2. Let K be a field, X an integral variety and let A ⊂ X(K) be a
subset. Then we say that A is stably thin if for every dominant morphism f : Y → X
of integral varieties over K, f−1A ⊂ Y (K) is thin.

This property is preserved under many operations. For example, in the above
situation, f−1A is also stably thin. A stably thin set can be viewed as a sort of
“∞-thin” set, as the next proposition shows.

Proposition 3.3.3. Let K be a field, X an integral variety and let A ⊂ X(K) be a
subset. Then A is stably thin if and only if it is d-thin for every d > 1.

Proof. We first prove by induction that if A is stably thin, then it is d-thin for every
d > 1. Assume that A is stably thin and that A is d-thin for some d > 1. Then there
is an integer n > 1 and for each i ∈ {1, . . . , n} a morphism fi : Yi → X of integral
K-varieties of degree at least d such that A \ A′ ⊂

⋃n
i=1 fi(Yi(K)), for some subset

A′ ⊂ A which is not Zariski dense in X. Since A is stably thin, Bi : = f−1
i (A) is thin

for each i ∈ {1, . . . , n}, so we see that A is 2d-thin. Since any stably thin set is 2-thin,
this implies by induction that any stably thin set is d-thin for every integer d > 1.

Conversely, assume A is d-thin for every d > 1 and let g : Z → X be a dominant
morphism of integral varieties over K. Then the algebraic closure of the function
field K(X) in K(Z) is a finite extension of degree l. For a generically finite morphism
f : Y → X of degree d > l, and for every irreducible component Y ′ of (Y ×X Z)red,
consider the induced morphism Y ′ → Z. This is a generically finite morphism, since
the restriction f−1U → U is finite for some dense open U ⊂ X so (f−1U ×X Z)red →
Z ×X U is finite. The degree of Y ′ → Z is at least 2, since K(Y ′) contains a finite
extension of K(X) of degree d, which cannot be contained in K(Z).

Since A is d-thin, there exists an integer n, a subset A′ ⊂ A which is not Zariski
dense and for i ∈ {1, . . . , n} a dominant generically finite morphism fi : Yi → X of
integral K-varieties such that A\A′ ⊂

⋃n
i=1 fi(Yi(K)) and each fi has degree at least

d > l. Denote the irreducible components of (Yi ×X Z)red by Y ′
ij and the induced

morphisms to Z by fij : Y ′
ij → Z. The set g−1A′ is not Zariski dense in Z, and

by construction g−1(A \ A′) ⊂
⋃

i,j fij(Y
′
ij(K)). Thus we see that g−1A is thin and

therefore A is stably thin.

Rational points on abelian varieties and integral points on tori give examples of
stably thin sets, as the next example shows.

Example 3.3.4. Let A be a finitely generated subgroup of G(K) for an semiabelian
variety G of positive dimension over a field K. For example, A = G(K) when K is
a global field and G is an abelian variety. Then for any integer d > 1, the group
A/dA is finite. Let a1, . . . , an ∈ A be a set of representatives for the classes in A/dA.
If a ∈ dA + ai for some i ∈ {1, . . . , n}, then it is the image of a K-point under the
morphism G → G given by multiplication by d followed by translating by ai. This
morphism has degree divisible by d, so A is d-thin. As d was arbitrary, this implies
that A is stably thin.

This notion gives a way to formalize the intuition that for a number field K there
are more integer squares in Gm(K) than integral units Gm(OK) ⊂ Gm(K). The
former is thin, but probably not 3-thin, while the latter is stably thin.
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Theorem 3.3.5. Let (K,C) be a PF field such that Pic(C) is finitely generated and
let d > 1 be an integer. If K is a function field assume that (k×)/(k×)d is finite. Let
(X,M) be a toric pair where X is a normal complete split toric variety over K and
let (X ,M) be any integral model over B. Let NM be the lattice as in Definition 3.2.6.
Then

1. if NM has finite index in N and d divides |N : NM |, then (X ,M)(B) ⊂ X(K)
is strictly d-thin.

2. if NM does not have finite index in N , then (X ,M)(B) is stably thin.

3. in the function field case, if (X ,M) is the toric integral model and N+
M ̸= NM ,

then (X ,M)(C) ⊂ X(K) is stably thin.

Furthermore, if (X ,M) is the toric integral model and Gm(B) is finite, then
(X ,M)(B) is not Zariski dense in X if and only if (X ,M)(B) is stably thin.

Remark 3.3.6. If (K,C) is a function field of a curve and d ∈ ρ(K,C), then
(k×)/(k×)d is trivial or has order 2. If k is perfect of characteristic p, then (k×)p = k×.

Remark 3.3.7. If the group Gm(B) is infinite, then the points on the toric integral
model (X ,M)(B) are always Zariski dense, so Theorem 3.3.5 completely characterizes
when the M-points on a toric integral model are Zariski dense. Furthermore, the
group Gm(B) is finite if and only if K = Q or an imaginary quadratic number field
and B = SpecOK , or K = k(C) for k a finite field and C \ B contains at most one
point.

Proof. Note that in the first two statements B can be chosen as small as we want,
since B′ ⊂ B implies (X ,M)(B′) ⊃ (X ,M)(B). Thus it follows from Proposition
2.1.25 that we can assume without loss of generality that (X ,M) is the toric integral
model, and for the first two statements we can assume that Pic(B) is trivial. We can
also assume that M = Mfin without loss of generality. Since for a toric resolution of
singularities f : Y → X with f−1Di Cartier for all i = 1, . . . , n, the set (X ,M)(B) is
thin if and only if (Y, f∗M)(B) is thin, we can assume that X is smooth.

Assume that NM ̸= N , |N : NM | is finite, d > 1 divides |N : NM | and K
is a global field or (k×)/(k×)d is finite. Then U(B)/U(B)d is finite, where U =
GdimX

m,B , since O(B)× is finitely generated when K is a global field and O(B)×/k×

is finitely generated when K is a function field. There exists a lattice N ′ such that
NM ⊂ N ′ ⊂ N such that |N : N ′| = d and so, using the surjectivity of ϕ proven in
Proposition 3.2.4, we can choose M ⊂ M ′ such that |N : NM ′ | = d. The inclusion
M ⊂ M ′ implies (X ,M)(B) ⊂ (X ,M′)(B), and thus it suffices to consider the case
d = |N : NM |. By intersecting the fan of X with NM , we get a new complete
normal split toric variety XM and a degree d morphism XM → X. By a resolution
of singularities X ′ → XM , we find a degree d morphism f : X ′ → X of smooth
complete split toric varieties. By Proposition 3.2.4 it follows that for every place
v ∈ B and point P ∈ (X ,M)(Ov), there exists P ′ ∈ (X ′, f∗M)(Ov) ⊂ X ′(Kv) such
that ϕv(P ) = ϕv(f(P ′)). Since we assumed Pic(B) is trivial, this means that for all
P ∈ (X ,M)(B) there exists P ′ ∈ X ′(K) such that ϕv(P ) = ϕv(f(P ′)) for all v ∈ B.
Thus we see by Proposition 3.2.4 that the image of f contains an element from every
U(B)-orbit in (X ,M)(B). The image of U ′(B) in U(B), where U ′ is the torus in
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X ′, contains U(B)d ⊂ U(B) and by the assumption on d we know that U(B)/U(B)d

is finite. Therefore H = U(B)/f(U ′(B)) is finite, and by choosing representatives
u1, . . . , ur ∈ U(B) for H, we find degree d morphisms

fi : X ′ → X

defined by P ′ 7→ uif(P ′) for P ′ ∈ X ′(K), so that every point in (X ,M)(B) lies in
the image of one of the fi. This proves the first statement.

Now assume that NM does not have finite index in N . Then there exists an
embedding NM → ZdimX−1 × {0} ⊂ ZdimX ∼= N . By Proposition 3.2.4, this implies
that there is an embedding (X ,M)(B) ⊂ GdimX−1

m (K)×Gm(B) ⊂ GdimX
m (K). Since

Gm(B) is finitely generated if K is a global field, and otherwise Gm(B)/k× is finitely

generated, Gm(B)/Gm(B)d
l

is finite for every integer l > 0. Thus Gm(B) is dl-thin
for every l > 0 and therefore by Proposition 3.3.3 implies that it is a stably thin subset
of Gm(K). Therefore (X ,M)(B) is also a stably thin subset of X(K). If furthermore
Gm(B) is finite and thus not Zariski dense in Gm, then (X ,M)(B) is not Zariski
dense in X.

Now we prove the third statement, so we assume that B = C and N+
M ̸= NM .

Let N ′ be the largest lattice contained in N+
M . N ′ does not have finite index in N

since otherwise the cone generated by N+
M would be NR, which implies N+

M = NM .
Since any P ∈ U(K) satisfies

∑
v∈ΩK

ϕv(P ) = 0 by the product formula, any P ∈
(X ,M)(C) satisfies ϕv(P ) ∈ N ′ for all v ∈ ΩK . Let (X,M ′) be the largest toric pair
contained in (X,M) such that ϕv(P ) ∈ N ′ for all P ∈ (X ,M′)(Ov). Then (X ,M′)(C)
contains (X ,M)(C) and it is a stably thin subset of X(K) since N ′ = NM ′ does not
have finite index in N . If Gm(C) is finite, then (X ,M′)(C) is not Zariski dense in X,
and thus (X ,M)(C) is not Zariski dense in X either.

Remark 3.3.8. The assumption on the finiteness of (k×)/(k×)d in Theorem 3.3.5 is
satisfied by many fields, such as

1. d-closed fields, such as separably closed fields if char(k) ∤ d,

2. perfect fields if d is a power of char(k),

3. finite fields,

4. real closed fields,

5. local fields if char(k) ∤ d [CF67, Chapter I, Section 1, Proposition 5],

6. Euclidean fields if d is a power of 2.

Remark 3.3.9. The generically finite morphisms used in the proof of Theorem 3.3.5
are ramified since any complete toric variety is geometrically simply connected [SGA1,
Exposé XI, Corollaire 1.2]. Therefore the thin sets in the theorem are strongly thin
as defined in [BFP23].

We now prove Corollary 1.1.9 by specializing Theorem 3.3.5 to global fields.
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Proof of Corollary 1.1.9. First assume T ̸= ∅. By Theorem 1.1.3, the toric pair
(X,M) satisfies M -approximation off T if and only if N = NM . By Theorem 1.1.1
this implies the M-Hilbert property over B for any integral model (X ,M) of (X,M)
satisfying (X ,M)(B) ̸= ∅. On the other hand Theorem 3.3.5 implies that (X ,M)(B)
is thin if N ̸= NM , so (X ,M)(B) is thin if and only if N ̸= NM .

Now we assume T = ∅. Then Theorem 1.1.3 implies that the toric pair (X,M)
satisfies M -approximation if and only if N+

M = N . If (X ,M) is the toric integral
model of (X,M) and N ̸= N+

M , then Theorem 3.3.5 implies that (X ,M)(B) is stably
thin.

In Theorem 3.3.5, the condition on the finiteness of (k×)/(k×)d is necessary for
the result to be true, as the next proposition shows that the M-Hilbert property is
always satisfied on a split toric variety for a function field K = k(C), where k is
a Hilbertian field of characteristic zero. See [FJ05, Chapter 12] for background on
Hilbertian fields.

Proposition 3.3.10. Let (K,C) be a PF field, where C is a curve over an Hilbertian
field k of characteristic zero. Let X be a proper integral variety over k with X(k) not
thin and let X = X ×k C. Let (X,M) be a pair over (K,C) such that Dα ̸= X for
all α ∈ A. Then the set (X ,Mc)(C) ⊂ X(K) is not thin.

Proof. As the closed subschemes Dα are all proper closed subsets of X, U = X \α∈A
Dα is a dense open. The constant sections of U×C → C correspond to the k-rational
points on U . These areM-points, as they avoid the closed subschemes Dα = Dα×kC
entirely so U(k) ⊂ (X ,Mc)(C). By [BFP23, Theorem 1.1], U(k) is not a thin subset
of X(K) since K/k is a finitely generated extension. Thus (X ,Mc)(C) is not thin.

Using Theorem 1.1.3 and Theorem 3.3.5, we can produce examples over some PF
fields where integral M-approximation does not imply the M-Hilbert property, in
contrast to the situation over global fields.

Corollary 3.3.11. Let (K,C) be a PF field with ρ(K,C) ̸= 1, let T ⊂ ΩK be a
nonempty finite set of places, and set B = C \ (T ∩ C). Let (X,M) be a toric pair
with M = Mfin and |N : NM | ∈ ρ(K,C), NM ̸= N . Then the toric integral model
(X ,M) satisfies integralM-approximation off T , but (X ,M)(B) is thin.

Proof. Combine Theorem 1.1.3 and Theorem 3.3.5 together with the observation that
the ground field of C satisfies k× = (k×)|N :NM | by Lemma 3.2.12 since |N : NM | ∈
ρ(K,C).

Example 3.3.12. For any smooth split toric variety U over K such that Pic(U)
contains torsion, the B-integral points on the toric integral model U are thin for any
nonempty open B ⊂ C. This follows from combining Theorem 3.3.5 with Proposition
3.1.7. However, as we will see in Corollary 3.4.2, U still satisfies strong approximation
off any single place if the orders of torsion in Pic(U) are contained in ρ(K,C) and

O(XK)× = K
×

.

Corollary 3.3.11 leaves several natural questions on potential extensions of Theo-
rem 1.1.1.
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Question 3.3.13. Let (K,C) be a PF field with ρ(K,C) = {1}. Let (X,M) be a pair
over (K,C) with integral model (X ,M) over B ⊂ C, such that X is a geometrically
integral variety and Dα ̸= X for any α ∈ A. Suppose that (X ,M) satisfies integral
M-approximation off a finite set of places T ⊂ ΩK and (X ,M)(B) ̸= ∅. Does (X ,M)
satisfy the M-Hilbert property over B?

In order to obtain pairs satisfying integral M-approximation but failing the M-
Hilbert property in Corollary 3.3.11, we needed to take T ̸= ∅, so it also makes sense
to ask the following variant of the previous question.

Question 3.3.14. Let (K,C) be a PF field with ρ(K,C) ̸= {1} and let T = ∅. With
the other assumptions as in Question 3.3.13, does (X ,M) satisfy the M-Hilbert
property over B?

In the setting of split toric varieties, it seems likely that the results for the M-
Hilbert property should extend, so we pose the following conjecture.

Conjecture 3.3.15. Let (K,C) be a PF field and let (X,M) be a toric pair. If
NM = N , then the toric integral model (X ,M) satisfies theM-Hilbert property over
any open B ⊊ C. If furthermore N+

M = N , then (X ,M) satisfies the M-Hilbert
property over C.

3.4 Strong approximation and M-approximation
for Campana points

In this section we will consider special cases of Theorem 1.1.3 and its implications for
integral points, Campana points and Darmon points on split toric varieties.

If a toric pair (X,M) encodes the integrality condition of an open V ⊂ X, then
the lattice NM is related to the fundamental group of V .

Proposition 3.4.1. Let K be a PF field of characteristic 0, let X be a complete
normal split toric variety over K and let V ⊂ X be an open toric subvariety.

If (X,M) is the toric pair corresponding to V ⊂ X as in the first example 1 of
Section 2.1.4, then there exists an isomorphism of profinite groups

π1(VK) ∼= N̂/NM ,

where π1(VK) is the étale fundamental group of VK and N̂/NM is the profinite com-
pletion of N/NM .

Furthermore, the only regular functions on VK are constant if and only if the cone
generated by N+

M is NR.

Proof. By [Stacks, Tag 0A49] we have a natural isomorphism π1(VK) ∼= π1(VC) of
étale fundamental groups, where VC is the toric variety over C with the same fan as
U . Now the isomorphism follows directly from [CLS11, Theorem 12.1.10].

Note that the cone generated by N+
M is exactly the support |ΣV | of the fan ΣV

defining V , as defined in [CLS11, Definition 3.1.2]. By [CLS11, Exercise 4.3.4], which
generalizes to arbitrary fields, |Σ| = NR is equivalent to O(VK) = K.
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Proof of Corollary 1.1.6. Combine Proposition 3.4.1 with Theorem 1.1.3.

The description of the fundamental group given in Proposition 3.4.1 does not hold
if K has positive characteristic, since then even the affine line A1

K
has an infinite

fundamental group (see e.g. [Kum14, Theorem 1.1]). Nevertheless, a similar weaker
result is still true if one considers only covers of degree coprime to char(K), see Remark
3.5.9. The following corollary gives another characterisation of strong approximation,
which is also valid in positive characteristic.

Corollary 3.4.2. Let (K,C) be a PF field, let V be a smooth split toric variety, and
let T ⊂ ΩK be a nonempty finite set of places.

1. The variety V satisfies strong approximation off T if O(XK)× = K
×

and
|Pic(V )tors| ∈ ρ(K,C), where Pic(V )tors is the torsion subgroup of Pic(V ). The
converse also holds if Pic(C) is finitely generated.

2. The variety V satisfies strong approximation if and only if O(V ) = K and
Pic(V ) is torsion-free.

Proof. Choose a smooth toric compactification V ⊂ X. The first claim is a direct
consequence of Proposition 3.1.7 and Theorem 1.1.3, while the second one follows
from combining these results with [CLS11, Exercise 4.3.4] (which holds over general
fields). The last claim follows from [CLS11, Proposition 4.2.5] (where we note that
the result is independent of the field.)

Remark 3.4.3. By [CLS11, Proposition 4.2.5], which generalizes to arbitrary fields,
any toric variety whose fan contains a cone of maximal dimension has a torsion-free
Picard group. By using a resolution of singularities, Corollary 3.4.2 implies that a
normal affine toric variety V satisfies strong approximation off a nonempty set of
places T if and only if it does not have torus factors.

Over number fields, we have yet another characterisation of strong approximation
for toric varieties.

Corollary 3.4.4. Let K be a number field, let V be a smooth split toric variety and
let T ⊂ ΩK be a nonempty finite set of places. Then the following are equivalent:

1. The variety V satisfies strong approximation off T .

2. Br(V )/Br0(V ) = 0.

3. Br1(V )/Br0(V ) = 0.

Here, Br(V ) is the Brauer group of V , Br1(V ) = ker(Br(V ) → Br(VK)) is the al-
gebraic Brauer group, and Br0(V ) = im(Br(K) → Br(V )) consists of the constant
elements in Br(V ). If V satisfies any of the above conditions (1)-(3), then V satisfies
strong approximation if and only if O(V ) = K.

Proof. We choose a smooth toric compactification V ⊂ X. If (X,M) is the pair
corresponding to integral points on V , then by Theorem 1.1.3, V satisfies strong
approximation if and only if N = NM . By [DF93, Corollary 1.3], N = NM implies
that the transcendental Brauer group Br(VK) ∼= Br(V )/Br1(V ) is trivial.
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If V has a torus factor, then V = V ′ × Gm for some split toric variety V ′. So
since Br1(G1

m)/Br0(G1
m) is nontrivial, it follows that Br1(V )/Br0(V ) ̸∼= 0. If V does

not have torus factors, then [CS21, Proposition 5.4.2, Remark 5.4.3(3)] implies that
Br1(V )/Br0(V ) ∼= H1(K,PicVK). The Galois cohomology group H1(K,PicVK) is
trivial if and only if PicVK

∼= PicV is torsion-free, since Gal(K/K) acts trivially on
PicV . Now the equivalence of the statements follows from Corollary 3.4.2.

Using the above criteria for strong approximation, we can characterize when M -
approximation is satisfied for Campana points. Now we will use Theorem 1.1.3 to
prove Corollary 1.1.8, characterising M -approximation for Campana points.

Proof of Corollary 1.1.8. Let (X,M ′) be the pair associated with the integral points
on V . Then M ⊂M ′ by definition. Thus if X satisfies M -approximation off T , then
V satisfies strong approximation off T by Proposition 2.2.12. Conversely assume that
V satisfies strong approximation off T .

Now we set m = maxmi<∞(mi). If X is smooth then minρi , (mi + 1)nρi ∈ NM

for all i ∈ {1, . . . , n} with mi < ∞, so nρi ∈ NM and thus NM = NM ′ , so M -
approximation holds if T ̸= ∅ by Theorem 1.1.3. If furthermore T = ∅, then N+

M ′ = N
by Corollary 3.4.2. Thus every element c ∈ N can be written as c =

∑n
i=1 cinρi

for
some ci ≥ 0 with ci = 0 if mi = ∞, and therefore we have m′c ∈ N+

M for m′ ≥ m.
Thus c = (m + 1)c + m(−c) ∈ N+

M , showing that (X,M) satisfies M -approximation
off T if X is smooth.

If X is singular, then we consider a toric resolution of singularities f : X̃ → X.
For every torus-invariant prime divisor D̃ with f(D̃) ̸⊂ X \ V , D̃ ̸⊂ f−1Di for any
i ∈ {1, . . . , n} with mi = ∞. Denote the Zariski closure of D̃ in the toric integral
model X̃ of X̃ by D̃. For each divisor Di on X with D̃ ⊂ f−1Di as schemes, we have

nv(D̃, P ) ≤ nv(f−1Di, P ) = nv(Di, f(P ))

for all v ∈ Ω<∞
K and P ∈ X̃(Kv), where the equality is due to Proposition 2.1.31.

This gives the inclusion (X̃, M̃) ⊂ (X̃, f−1M), where M̃ is the Campana condition
for the divisor

D̃m̃ =

ñ∑
i=1

f(D̃i )̸⊂X\V

(
1− 1

m

)
D̃i +

ñ∑
i=1

f(D̃i)⊂X\V

D̃i,

where D̃1, . . . , D̃m̃ are the torus-invariant prime divisors on X̃. Since V satisfies
strong approximation off T , V ×X X̃ ⊂ X̃ also satisfies strong approximation off T
by Corollary 3.2.1. Since X̃ is smooth, the first part of the proof implies (X̃, M̃)
satisfies M̃ -approximation off T and thus (X̃, f−1M) satisfies f−1M -approximation.
Now Corollary 3.2.1 implies (X,M) satisfies M -approximation.

3.5 Darmon points and root stacks

For smooth split toric varieties, we can generalize the connection between the fun-
damental group and strong approximation to M -approximation for Darmon points,
using root stacks.
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Definition 3.5.1. Let X be a scheme and let

Dm =

n∑
i=1

(
1− 1

mi

)
Di,

for distinct prime Cartier divisors D1, . . . , Dn on X and integers m1, . . . ,mn ∈ N∗ ∪
{∞}. Then We define the root stack associated to (X,Dm) to be

(X,
m
√
D) :=

(
X \

n⋃
i=1

mi=∞

Di

)
D̃,m̃

,

where the right hand side is as defined in [Cad07, Definition 2.2.4]. Here m̃ = (mi)i∈I

and D̃ = (Di)i∈I , where I = {i ∈ {1, . . . , n} | mi ̸=∞}.

The root stack (X, m
√
D) is an algebraic stack which is Deligne-Mumford if

m1, . . . ,mn ∈ O(X)× [Cad07, Theorem 2.3.3]. It comes with a morphism

(X,
m
√
D)→ X,

which is an isomorphism over U . For i ∈ {1, . . . , n} with mi <∞, the pullback of Di

along this morphism is mi · 1
mi
Di, where 1

mi
Di is a prime Cartier divisor on (X,Dm).

Thus the morphism (X, m
√
D)→ X an isomorphism over U and it is ramified over Di

with multiplicity mi for every i ∈ {1, . . . , n} with mi <∞. The following proposition
illustrates the close relationship between root stacks and Darmon points.

Proposition 3.5.2. Let (K,C) be a PF field, let B ⊂ C be a nonempty open subset
and let X be a proper variety over K with an integral model X over B. Let Dm =∑n

i=1

(
1− 1

mi

)
Di for m1, . . . ,mn ∈ N∗∪{∞} and prime Cartier divisors D1, . . . ,Dn

on X . Let v ∈ B, let T ⊂ ΩK be a finite set of places, and let R be Ov, A
T
K , AT

B

or a field extension L of K. For every place v ∈ B, the Darmon points over R on
(X ,Dm) as in Definition 2.1.19 are exactly the points P ∈ X (R) such that there exists
a factorisation

SpecR (X , m
√
D)

X .

P (3.5.1)

Moreover, if the divisors Di pull back to Cartier divisors on SpecR, then the above
factorisation is unique.

In particular, if P : B → X is a morphism such that Pic(B) = 0 or imP ̸⊂⋃n
i=1Di, then P is a Darmon point on (X ,Dm) if and only if P factors through the

root stack as in (3.5.1).

Proof. For i ∈ {1, . . . , n}, let L By the definition of (X , m
√
D) and [Cad07, Remark

2.2.2, Remark 2.2.5], a morphism SpecR → (X , m
√
D) is determined by a morphism

P : SpecR→ X \
⋃n

i=1
mi=∞

Di together with isomorphism classes (L1, s1), . . . , (Ln, sn)

of line bundles on SpecR with a given global section and isomorphisms ϕi : L⊗mi
i →
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P∗O(Di) such that ϕi(s
mi
i ) = P∗1Di , where 1Di denotes the canonical section of

O(Di). Since Pic(R) is trivial, which for the adelic rings follows from Proposition
1.3.8, the line bundles P∗O(Di) are trivial and thus the isomorphism classes just
correspond to ideals on R. Thus the factorisation exists if and only if for all i with
mi ̸= ∞ the ideal defining the closed subscheme P ∩ D ⊂ SpecR is an mi-th power
of an ideal (which is uniquely determined by this property).

If the image of P is not contained in
⋃n

i=1Di, then the pullbacks
(P∗D1,P∗s1), . . . , (P∗Dn,P∗sn) all exist as effective Cartier divisors and thus cor-
respond to invertible ideals on R. For i ∈ {1, . . . , n}, any automorphism of P∗Di

fixing P∗si corresponds to an automorphism of R-modules R → R fixing a nonzero
divisor, and is therefore trivial. Thus the factorisation is necessarily unique.

Now consider a morphism P : B → X . If Pic(B) = 0, then by the same reasoning
as above, P is a Darmon point on (X ,Dm) if and only if it factors through the root
stack. If instead imP ̸⊂

⋃n
i=1Di, then the divisors Di pull back to effective Cartier

divisors on B, and therefore [Cad07, Remark 2.2.2] implies that P is a Darmon point
if and only if it factors though the root stack.

The next proposition gives conditions for a root stack to be regular.

Proposition 3.5.3. Let X be a regular scheme and let

Dm =

n∑
i=1

(
1− 1

mi

)
Di,

for distinct prime Cartier divisors D1, . . . , Dn on X and integers m1, . . . ,mn ∈ N∗ ∪
{∞} such that the support of Dm is an strict normal crossings divisor. Then (X, m

√
D)

is regular.

Proof. Without loss of generality, we can assume that m1, . . . ,mn are all finite, since
a the restriction of a strict normal crossings divisor to an open is still strict normal
crossings. As the statement is local, we can assume that X = SpecA is affine and
Di = SpecA/(si). By [Cad07, Example 2.4.1] this implies

(X,
m
√
D) ∼= [SpecR/(µm1

×Z · · · ×Z µmn
)],

where R = A[x1, . . . , xn]/(xm1
1 − s1, . . . , xmn

n − sn) and µmi
acts trivially on A and

xj for j ̸= i, and acts on xi by ti · xi = t−1
i xi. We will first prove that SpecR

is regular. Since R is finite over A, for every maximal ideal m ∈ SpecA with an
extension to a maximal ideal m′ ∈ SpecR, the dimensions of the local rings agree:
dimAm = dimRm′ . Furthermore, since the support of Dm is a strict normal crossings
divisor, the elements in {s1, . . . , sn} ∩ m are part of a regular system of parameters
for m. and therefore the elements in {x1, . . . , xn} ∩ m′ is part of a regular system of
parameters for m′, since if I is the ideal generated by the x1, . . . , xn contained in m
and I ′ is generated by the s1, . . . , sn contained in m′, then Rm′/I ′ ∼= Am/I. Thus Rm′

is a regular local ring, so SpecR is regular.
Note that SpecR → (X, m

√
D) is surjective, flat and of finite presentation. Con-

sider a smooth cover Y → (X, m
√
D), where Y is a scheme. Then SpecR×(X,

m√
D) Y

is a regular algebraic space since regularity is local in the smooth topology by [Stacks,
Tag 036D]. Since SpecR×(X,

m√
D)Y → Y is surjective, flat and of finite presentation,

Y is regular by [Stacks, Tag 06QN] and thus (X, m
√
D) is regular.
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Proposition 3.5.2 allows us to relate M -approximation with strong approximation
on root stacks, as studied in [Chr20; San23b].

Definition 3.5.4. Let U be a stack over a PF field (K,C) and let T ⊂ ΩK be a finite
set of places. We say that U satisfies strong approximation off T if the map

U(K)→ U(AT
K)

has dense image, where the topology on U(AT
K) is defined as in [Chr20, Definition

5.0.10].

Proposition 3.5.5. Let (K,C) be a PF field, T ⊂ ΩK a finite set of places, and X a

smooth proper variety over K. Let Dm =
∑n

i=1

(
1− 1

mi

)
Di for m1, . . . ,mn ∈ N∗ ∪

{∞} and smooth prime Cartier divisors D1, . . . , Dn on X. Assume that the support
of Dm is an strict normal crossings divisor. Let (X,M) be the pair corresponding to
the Darmon points on (X,Dm). Then (X,M) satisfies M -approximation off T if and
only if the root stack (X, m

√
D) satisfies strong approximation off T .

Proof. Write X̃ = (X, m
√
D) and X̃ = (X , m

√
D), for some integral model X over some

open subset B ⊂ C such that Di is the closure of Di in X and it is a prime Cartier
divisor. By [Chr20, Proposition 13.0.2],

(X,
m
√
D)(AT

K) =
∏

v∈ΩK\(B∪T )

X̃(Kv)×
∏

v∈B\T

(
X̃(Kv), X̃ (Ov)

)
as topological spaces (the cited proposition is formulated for global fields and with
T = ∅, but extends to this setting). By the assumptions on X and on Dm, the
root stack (X, m

√
D) is geometrically regular, and thus smooth, by Proposition 3.5.3.

This is because the divisors D1, . . . , Dn are smooth so the support of Dm,K is a strict
normal crossings divisor. Therefore by [Chr20, Proposition 7.0.8] there exists a scheme
Z over B and a surjective smooth morphism π : Z → X̃ , such that π(Z(Ov)) = X̃ (Ov)
for all v ∈ B and π(Z(Kv)) = X̃(Kv) for any place v ∈ ΩK . In general [Chr20,
Proposition 7.0.8] only gives a family of schemes ZN with this property, but we can
take the disjoint union of these to obtain Z. Since X̃ is smooth over K, ZK is smooth
over K as well, and thus is locally a variety. Therefore Proposition 2.2.6 implies
that U(Kv) ⊂ Z(Kv) is dense for any dense Zariski open subset U ⊂ Z and any
v ∈ ΩK . In particular this implies that (X,Mfin)(Kv) = (X \

⋃n
i=1Di)(Kv) lies dense

in X̃(Kv). Therefore, it follows that the image of (X,Mfin)(AT
K) is dense in X̃(AT

K).
Thus, by Proposition 2.2.5, X̃(K) is dense in X̃(AT

K) if and only if (X,M)(K) is
dense in (X,M)(AT

K).

We now consider the fundamental group π1(X, m
√
D) of the root stack as defined

in [Noo04], which classifies étale covers f : Y → (X, m
√
D), where Y is an algebraic

stack.

Definition 3.5.6. A morphism f : Y → X of connected algebraic stacks is an étale
cover if it is a finite étale morphism.

Note that such a morphism is always representable, see for example [Stacks, Tag
0CHT], so étale covers coincide with what Noohi calls covering maps.
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Similarly to the fundamental group of schemes, different choices of a base point
yield the same fundamental group up to isomorphism [Noo04, page 9], so we will leave
the choice of the point implicit. The following lemma classifies the étale covers of root
stacks in terms of the coarse spaces, and thus gives a concrete description of its étale
fundamental group.

Lemma 3.5.7. Let X be a connected locally Noetherian scheme and let D1, . . . , Dn

be distinct prime Cartier divisors on X, and m1, . . . ,mn ∈ N∗ whose images in O(X)
are invertible. Assume that the support of

Dm =

n∑
i=1

(
1− 1

mi

)
Di,

is a strict normal crossings divisor.
Then there is a one-to-one correspondence between

1. Étale covers f̃ : Ỹ → (X, m
√
D), and

2. Finite morphisms of connected schemes f : Y → X, such that f is étale over X \⋃n
i=1Di, and for all i ∈ {1, . . . , n} the pullback satisfies f∗Di =

∑
β∈Bi

ei,βD̃i,β

for distinct prime Cartier divisors D̃i,β on Y such that ei,β |mi for all β ∈ Bi.

Proof. Recall that our schemes are by assumption separated so since m1, . . . ,mn are
invertible in O(X), the stack (X, m

√
D) is separated and Deligne-Mumford by [Cad07,

Corollary 2.3.4]. Therefore for any étale cover Ỹ → (X, m
√
D), Ỹ is separated as the

map is finite and hence affine [Stacks, Tag 01S7] and Deligne-Mumford since it is
étale [Stacks, Tag 0CIQ]. Therefore by the Keel-Mori Theorem [Ryd13, page 631],
there exists a coarse moduli space Ỹ → Y , where Y is an algebraic space. Since the
coarse moduli space is universal for maps to algebraic spaces by definition [Ryd13,
Definition 6.8], the cover f̃ descends to a morphism f : Y → X. We thus obtain a
commutative diagram

Ỹ (X, m
√
D)

Y X.

f̃

f

(3.5.2)

We will show that Y is a scheme and that f : Y → X satisfies the desired properties.
Since the statement is local on X, we can reduce to the case that X = SpecA is

affine and the Di = SpecA/(si). By [Cad07, Example 2.4.1] this implies

(X,
m
√
D) ∼= [SpecR/(µm1

×Z · · · ×Z µmn
)],

where R = A[t1, . . . , tn]/(xm1
1 − s1, . . . , xmn

n − sn) and µmi acts trivially on A and xj
for j ̸= i, and acts on xi by ti · xi = t−1

i xi. Write Z = SpecR. Note that since R is a
finite A-algebra, the map Z → X is finite.

We now prove that f : Y → X is a finite morphism. Let U → Y be a finite
étale morphism from a scheme U and consider the following commutative diagram
consisting of Cartesian squares:
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U ×X Z Ỹ ×X Z Z

U ×Y Ỹ Ỹ (X, m
√
D)

U Y X.

f̃

f

Since U ×X Z → Z and Z → X are finite morphisms of schemes, U ×X Z → X is a
finite morphism as well.

Since X is locally Noetherian, [Ryd13, Theorem 6.12] implies that the map f is
proper and thus locally of finite type. Therefore U → X is also locally of finite type,
and since U ×X Z → U is surjective, [Stacks, Tag 0GWS] implies that U → X is
quasi-finite, and by [Stacks, Tag 02LS] it is finite and hence f is finite as well. By
[Stacks, Tag 03XX] Y is a scheme.

Since (X, m
√
D) → X is étale outside the support of Dm, f is étale outside its

support as well. Furthermore, since f̃ is étale and the pullback of Di along the mor-
phism (X, m

√
D)→ X is miEi for a prime divisor Ei, the multiplicity of every prime

divisor appearing in the pullback of Di to Ỹ is exactly mi. By the commutativity of
the diagram (3.5.2), the multiplicities ei,β divide mi.

Conversely, for any such morphism f : Y → X satisfying the properties in (2), we
will show we can construct a root stack Ỹ over Y and an étale cover f̃ : Ỹ → (X, m

√
D)

inducing the morphism f on coarse spaces. Since the support sup(Dm) is strict normal
crossings, Proposition 3.5.3 implies all points x̃ ∈ (X, m

√
D)×X sup(Dm) are regular.

Since the statement to be proved is local on X, and the regular locus is open, we can

assume that (X, m
√
D) is regular. Take Ỹ to be the root stack Ỹ = (Y,

m̃
√
D̃), where

D̃m̃ =
∑n

i=1

∑
β∈Bi

(
1− ei,β

mi
D̃i,β

)
. Since f is a finite map of schemes, Ỹ ×X Z → Z

is finite, so Ỹ ×XZ is a scheme by [Stacks, Tag 03XX]. The morphism Ỹ ×XZ → Z is
étale at the codimension 1 points appearing in the pullback of Di to Ỹ ×XZ, for every
i ∈ {1, . . . , n}. Therefore purity of the ramification locus [Stacks, Tag 0EA4] implies
that Ỹ ×XZ → Z is étale at every point above

⋃n
i=1Di, and thus Ỹ ×XZ → Z is étale

everywhere. Since Z → (X, m
√
D) is an étale cover, this implies f̃ : Ỹ → (X, m

√
D) is

an étale cover.

Now we can explicitly compute the fundamental group of a toric root stack. For
an abelian group G, let Ĝ = lim←−H

G/H be the profinite completion, where H runs
over all normal subgroups of G with finite index in G. Similarly, for a prime number
p, we let

Ĝ(p) = lim←−
H, p∤[G:N ]

G/H

be the prime-to-p completion. For a stack Z, we write π1,p∤(Z) for the quotient of
π1(Z) corresponding to covers with degree coprime to p.

Lemma 3.5.8. Let X be a smooth toric variety over an algebraically closed field
K and let D1, . . . , Dn be the the torus-invariant prime divisors on X and let
m1, . . . ,mn ∈ N∗ ∪ {∞} whose images in O(X) are invertible and let Dm be the
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corresponding Campana divisor. Let (X,M) be the pair corresponding to the Darmon
points on (X,Dm). If char(K) = 0, then

π1(X,
m
√
D) ∼= N̂/NM ,

while if K has characteristic p > 0 then

π1, p∤(X,
m
√
D) ∼= N̂/NM

(p)
.

Proof. We only write the proof for characteristic 0, as the positive characteristic case
is analogous. We write Σ for the fan of X \ ⌊Dm⌋. If X \ ⌊Dm⌋ is just the dense open
torus (so if m1 = · · · = mn = ∞) then the statement is true by [BS13, Propostion
1.1]. By this we see that a Galois cover of Gd

m is necessarily just a pair of d coverings
of Gm. Therefore, we can without loss of generality assume that X \ ⌊Dm⌋ does not
have torus factors. By [AP13, Theorem 4] any finite morphism f : Y → X \ ⌊Dm⌋
of connected schemes, such that the degree is coprime to p, is a morphism of toric
varieties. The cited theorem is only stated for complete toric varieties, but the proof
also works for the toric varieties without torus factors. Furthermore [AP13, Definition
1, Lemma 1] imply that the étale covers f : Y → (X, m

√
D) exactly correspond to maps

of fans (N ′,Σ)→ (N,Σ), where N ′ ⊂ N is a sublattice of finite index containing NM .
Furthermore, such a cover is a N/N ′-cover. By letting N ′ run over all lattices N ′ ⊂ N
of finite index which contain NM we obtain the result.

Proof of Corollary 1.1.10. Combine Theorem 1.1.3 with Lemma 3.5.8. For the second
part, note that the coarse space of (X, m

√
D) isX\⌊Dm⌋ and use Proposition 3.4.1.

Remark 3.5.9. Corollary 1.1.10 extends to characteristic p to give a necessary con-
dition for strong approximation on a toric root stack with invertible multiplicities.
If (X, m

√
D) satisfies strong approximation off T , then |π1,p∤(XK ,

m
√
DK)| ∈ ρ(K,C)

and similarly strong approximation implies that (XK ,
m
√
DK) does not have étale

covers of degree coprime to p. However, this is not a sufficient condition, since the
quotient group N/NM corresponding to Darmon points may have p-torsion.

Example 3.5.10. If char(K) = 0, X = P1 and Dm = 1
2 (0)+ 1

2 (∞) then the morphism
P1
K → P1

K given by (x0 : x1) 7→ (x20 : x21) factors as the étale morphism P1
K →

(P1
K ,

m
√
D) followed by the coarse moduli space morphism (P1, m

√
D)→ P1. The étale

morphism corresponds to the nontrivial element in π1(P1
K
, m
√
DK) ∼= Z/2Z.

More generally, if (Pn,M) is a toric pair corresponding to Darmon points, then
the group N/NM is nontrivial as soon as two multiplicities are not coprime. Therefore
we obtain the following consequence of Corollary 1.1.10.

Corollary 3.5.11. Let (K,C) be a PF field and let T ⊂ ΩK be a finite nonempty set
of places. Let Dm be the Q-divisor on Pn−1

K given by

Dm =

n−1∑
i=0

(
1− 1

mi

)
Di, Di = {xi = 0}.

Then (Pn−1
K , m

√
D) satisfies strong approximation off T if gcd(mi,mj) ∈ ρ(K,C) for

every i ̸= j. The converse also holds if Pic(C) is finitely generated. Furthermore,
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(Pn−1
K , m

√
D) satisfies strong approximation if and only if mi <∞ for all i ∈ {0, . . . , n}

and gcd(mi,mj) = 1 for every i ̸= j.

Proof. Let (Pn−1
K ,M) be the pair corresponding to the Darmon points on (Pn−1

K , Dm).
Consider the matrix 

−m0 m1 0 . . . 0
−m0 0 m2 . . . 0

...
...

...
. . .

...
−m0 0 0 . . . mn−1

 ,

where the columns correspond to generators of NM (if mi = ∞, we make the cor-
responding column 0 instead). By Theorem 1.1.3, M -approximation off T is satis-
fied if and only if the matrix has full rank and induces surjective homomorphisms
(Z/pZ)n → (Z/pZ)n−1 for every prime number p ̸∈ ρ(K,C). The matrix having full
rank is equivalent to mi = ∞ for at most one i ∈ {0, . . . , n − 1}. The surjectivity
at a prime number p ̸∈ ρ(K,C) is equivalent to some n × n minor of the matrix not
being divisible by p. As the maximal minors are, up to sign, of the form

∏n
i=0
i̸=j

mi for

some 0 ≤ j ≤ n, this is equivalent to gcd(
∏n

i=0
i ̸=0

mi, . . . ,
∏n

i=0
i ̸=n

mi) ∈ ρ(K,C). This is

in turn equivalent to gcd(mi,mj) ∈ ρ(K,C) for every i ̸= j. The proof for T = ∅ is
analogous.

The formula obtained above generalizes to a simple sufficient criterion for strong
approximation on toric stacks.

Corollary 3.5.12. Let K be a PF field and let T ⊂ ΩK be a nonempty set of
places. Let X be a smooth split toric variety and let (X, m

√
D) be the root stack

corresponding to Dm =
∑n

i=0

(
1− 1

mi

)
Di, and let Pσ(x1, . . . , xn) =

∏n
i=1
ρi⊂σ

xi for a

maximal cone σ. If gcdσ∈Σmax
(Pσ(m1, . . . ,mn)) ∈ ρ(K,C), then (X, m

√
D) satisfies

strong approximation off T . Here Σmax is the set of maximal cones in the fan of X.

Proof. If Vσ ∼= An is the affine open in the toric integral model X corresponding
to the maximal cone σ, then for any v ∈ Ω<∞

K , the lattice Nσ spanned by the im-
age of (X ,M)(Ov) ∩ Vσ(Ov) under ϕv in NM is generated by minρi for ρi ⊂ σ.
Thus |N : Nσ| = Pσ(m1, . . . ,mn). Since Nσ ⊂ NM , this implies |N : NM | divides
Pσ(m1, . . . ,mn), giving the result.

While Corollary 3.5.12 is a sufficient criterion, it is not a necessary condition on
many toric varieties, such as Hirzebruch surfaces.

Example 3.5.13 (Hirzebruch surfaces). Let (K,C) be a PF field such that Pic(C)
is finitely generated, T ⊂ ΩK a nonempty set of places and r ≥ 0 an inte-
ger. Consider the Hirzebruch surface Hr given by the fan with ray generators
nρ1

= (−1, r), nρ2
= (0, 1), nρ3

= (1, 0), nρ4
= (0,−1) and choose corresponding mul-

tiplicities m1,m2,m3,m4. If (Hr,M) is the pair for the Darmon points with these
multiplicities, then by looking at the generators modulo a prime number we see that
the prime numbers dividing |N : NM | are the prime numbers dividing

gcd(m1m2,m1m4,m2m3,m3m4, rm1m3).
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By Theorem 1.1.3, the pair (Hr,M) satisfies M -approximation off T if and only if
|N : NM | ∈ ρ(K,C). Moreover, (Hr,M) satisfies M -approximation if and only if
N = NM , m1,m3,m4 < ∞ and (r,m2) ̸= (0,∞). Note the additional rm1m3 factor
showing up in the index of |N : NM | compared to the criterion given in Corollary
3.5.12, showing that M -approximation can hold even if the condition in the corollary
is violated.

Finally we also consider M -approximation for pairs corresponding to Darmon
points on a singular variety.

Example 3.5.14. Let (K,C) be a PF field such that Pic(C) is finitely gener-
ated, T ⊂ ΩK a nonempty set of places and r ≥ 1 an integer. Consider the
weighted projective plane PK(1, 1, r) for r ≥ 1 with rays generated by nρ0 =
(−1, r), nρ1 = (1, 0), nρ2 = (0,−1) and choose corresponding multiplicities m0,m1,m2

with m0,m1 < ∞. Then the Darmon points on PK(1, 1, r) satisfy M -approximation
off T if and only if gcd(m0,m1), gcd(m0m1,m2, r − 1) ∈ ρ(K,C). Furthermore the
Darmon points on PK(1, 1, r) satisfy M -approximation if and only if gcd(m0,m1) =
gcd(m0m1,m2, r − 1) = 1 and m2 < ∞. In particular, if r = 2, then whether M -
approximation is satisfied (off T or off ∅) does not depend on the value of m2.



4. M-points of bounded height

In this chapter we propose an asymptotic formula for the number of M-points of
bounded height, which generalizes Manin’s conjecture for rational points of bounded
height, as well as its extension [PSTVA21, Conjecture 1.1] for Campana points. In
Chapter 5, we will then prove this asymptotic formula for toric pairs over Q.

4.1 Divisors on pairs

In the remaining chapters, we restrict our attention to smooth pairs (X,M) =
(X, ((Di)i∈{1,...,n},M)).

Definition 4.1.1. A pair (X,M) over a field K of characteristic 0 is called smooth if

1. X is a smooth variety over K,

2. every divisor Di is connected, nonempty and smooth over K,
∑n

i=1Di is a strict
normal crossings divisor as defined in [Stacks, Tag 0BI9],

3. the monoid Mmon ⊂ Nn generated by M ∩ Nn is finitely generated.

The use of the term “smooth” is motivated by the fact that strict normal crossings
pairs as considered in logarithmic geometry are log smooth, see e.g. [Ogu18, Chapter
IV, Example 3.1.14]. Furthermore, Proposition 3.5.3 shows that a root stack (X, m

√
D)

corresponding to a smooth pair (X,M) is smooth.

Assumption 4.1.2. From now on, all pairs considered will be smooth. Furthermore,
we will always assume that X is a connected, proper variety.

Definition 4.1.3. A smooth pair (X,M) is proper if X is proper and M contains a
non-zero multiple of the standard basis vector ei for all i ∈ {1, . . . , n}.

If (X,M) is a pair corresponding to Darmon points, then the corresponding root
stack (X, m

√
D) lies over X and (X, m

√
D) → X is a ramified morphism which is an

isomorphism over the open set U = X \ (D1 ∪ · · · ∪Dn).
More generally we can regard (X,M) as some sort of geometric space akin to a

scheme or stack lying above X. If M ∩ Nn is a monoid with topological closure M,
then (X,M) determines a functor S 7→ (X,M)(S) as we have seen in Remark 2.1.18.
We view the natural inclusion map (X,M) → X as analogous to an “generically
finite morphism” which is an isomorphism over U . Inspired by this view we introduce
corresponding objects to the pair (X,M), such as divisors and a Picard group.

81
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Notation 4.1.4. For a smooth pair (X,M), we write

ΓM = {m ∈M |m is not a sum of two nonzero elements in Mred,mon}

for the unique minimal set of generators of the monoid Mred,mon. Since we assume
that (X,M) is smooth, ΓM is always finite. For m ∈ Nn, we write Cm for the finite
set of connected components of the set

n⋂
i=1

mi>0

Di ⊂ X.

Note that by [Stacks, Tag 0BIA], every such connected component is irreducible.
Furthermore, we will write ΓM,C for the set of tuples (m, c) with m ∈ ΓM and c ∈ Cm.
Similarly, we also write Nn

C for the set of tuples (m, c) with m ∈ Nn and c ∈ Cm. If
for m there is a unique component c, we will routinely identify m and (m, c).

Example 4.1.5. If M only contains the element (0, . . . , 0) then ΓM is the empty set.

Example 4.1.6. If (X,M) is the pair corresponding to the Darmon points for

the Campana pair (X,Dm), where Dm =
∑n

i=1

(
1− 1

mi

)
Di for positive integers

m1, . . . ,mn, then ΓM = {m1e1, . . . ,mnen}. If (X,M ′) is the pair corresponding to
the Campana points for the Campana pair (X,Dm), then ΓM ′ = {m1e1, . . . , (2m1 −
1)e1,m2e2, . . . , (2mn − 1)en}.

To each element (m, c) ∈ ΓM,C we associate a formal symbol D̃m,c, which we will
refer to as a prime divisor on (X,M).

Definition 4.1.7. The group of divisors on (X,M) is

Div(X,M) = Div(U)×
⊕

(m,c)∈ΓM,C

Z(D̃m,c),

where Div(U) is the group of divisors on U . A divisor on (X,M) is an element of
Div(X,M). Similarly, a Q-divisor is an element of Div(X,M)Q and analogously, an
R-divisor is an element of Div(X,M)R. A prime divisor D̃ on (X,M) is a prime
divisor on U or D̃ = D̃m,c for some (m, c) ∈ ΓM,C . Finally, a Q-divisor is called
effective if it is a nonnegative Q-linear combination of prime divisors on (X,M).

Notation 4.1.8. If D,D′ are two Q-divisors on a pair (X,M), then we write D ≥ D′

if D −D′ is effective.

In order to define the Picard group of a pair, we first need to define when two
divisors on a pair are linearly equivalent. We will define this notion by introducing the
pullback pr∗M : Div(X) → Div(X,M) from divisors on X to divisors on (X,M). In
order to define this homomorphism, we first need to determine for every (m, c) ∈ ΓM,C
and every divisorD ∈ Div(X) what the coefficient µ((m, c), D) of D̃m,c in the pullback
of D should be.

Let OX,c be the local ring at the closed subscheme c ⊂ X. Let f1, . . . , fn ∈
OX,c be local equations of the divisors D1, . . . , Dn, such that fi = 1 for all i ∈
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{1, . . . , n} satisfying c ̸⊂ Di. We consider the ring Rm,c = OX,c[X1, . . . , Xn]/(Xm1
1 −

f1, . . . , X
mn
n − fn) obtained by adjoining f

1/mi

i := Xi to OX,c for all i ∈ {1, . . . , n}
with mi > 0. By the strict normal crossings assumption on the divisors, the proof of
Proposition 3.5.3 shows that R(m,c) is a regular local ring whose maximal ideal I is

generated by all elements f
1/mi

i with mi > 0.

Definition 4.1.9. Let (m, c) ∈ Nn
C and let D ∈ Div(X) be an effective divisor given

by a local equation g = 0, where g ∈ OX,c. Then we define

µ((m, c), D) := max{µ ∈ N | g ∈ Iµ},

where the ideal I ⊂ R(m,c) is defined as above. More generally, if D = D1 −D2 is a
difference of two effective divisors on X with disjoint support, we set

µ((m, c), D) = µ((m, c), D1)− µ((m, c), D2).

The function µ((m, c),−) is a group homomorphism, as the next proposition
shows.

Proposition 4.1.10. Let R be a regular local ring with a nonzero maximal ideal I.
Then the function v : R \ {0} → N given by

v(g) = max{r ∈ N | g ∈ Ir}

for g ∈ R extends to a valuation on the fraction field K of R. In particular v(gg′) =
v(g) + v(g′) for any g, g′ ∈ R.

Consequently,
µ((m, c),−) : Div(X)→ Z

is a group homomorphism.

Proof. Let n be the Krull dimension of R and let {f ′1, . . . , f ′n} be a minimal set of
generators of I. Then by adjoining the elements f ′i/f

′
j ∈ K to R for i, j ∈ {1, . . . , n},

we obtain a local ring R′ ⊃ R. The extension I ′ ⊂ R′ of I is a principal maximal
ideal, so R′ is a discrete valuation ring. The function v is now simply the restriction
of the valuation on K determined by R′ since I = I ′ ∩R.

The function µ is particularly easy to compute on the divisors D1, . . . , Dn.

Remark 4.1.11. For the divisors D1, . . . , Dn, the definition of µ((m, c), Di) simply
reduces to

µ((m, c), Di) = mi.

Now we are ready to define the pullback.

Definition 4.1.12. Let the pullback of divisors on X to divisors on (X,M) be the
group homomorphism

pr∗M : Div(X)→ Div(X,M)

defined by

Di 7→
∑

(m,c)∈ΓM,C

miD̃m,c,
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for i = 1, . . . , n and

D 7→ D +
∑

(m,c)∈ΓM,C

µ((m, c), D)D̃m,c

for every divisor D ∈ Div(U).

Remark 4.1.13. Let (m, c) ∈ Nn
C . If c is not contained in the support of a divisor

D on X, then
µ((m, c), D) = 0.

Remark 4.1.14. The integer µ((m, c), D) is the largest integer µ such that there is
an inclusion of subschemes

n⋂
i=1

mi>0

µ lcm(m1, . . . ,mn)

mi
Di ⊂ lcm(m1, . . . ,mn)D

in an open neighbourhood of the generic point of c, where the intersection is the
scheme theoretic intersection. The role of the least common multiple lcm(m1, . . . ,mn)
here is to ensure that the left hand side is a well defined closed subscheme of X.

Remark 4.1.15. The pullback of divisors to (X,M) is intimately related to the
theory of weighted (stacky) blow-ups as described in [QR22]. For (m, c) ∈ Nn

C , con-
sider an open subset X ′ ⊂ X such that the divisors D1, . . . , Dn are principal on
X ′ and D̃m = D̃m,c. Let I• be the graded OX′ -subalgebra of OX′ [t] generated by
f1t

m1 , . . . , fnt
mn , where fi = 0 is a local equation forDi. If π : BlI•X

′ → X ′ is the cor-
responding weighted blow-up as defined in [QR22, Definition 3.2.1] and D ∈ Div(X ′),
then the coefficient of the exceptional divisor in π∗D is equal to µ((m, c), D).

Note that Div(U) embeds into Div(X,M) in two distinct ways. The first is by
the embedding Div(U) ↪→ Div(X,M) : D 7→ D directly given by the definition of
Div(X,M). The second one is given by composing Div(U) ↪→ Div(X) with the
pullback Div(X)→ Div(X,M) to obtain the map D 7→ pr∗M D.

Definition 4.1.16. For a divisor D ∈ Div(U), we call D ∈ Div(X,M) the strict
transform of D in (X,M).

This terminology is motivated by the fact that pr∗M D − D is a divisor whose
restriction to U is trivial. This is illustrated by the following example.

Example 4.1.17. Let (X,M) be a pair obtained by taking X to be a smooth variety,
the divisors D1, D2 to be two smooth divisors on X intersecting transversally with
connected intersection D1 ∩D2, and let M ⊂ N2 be the monoid generated by (1, 1).
Let X̃ = BlD1∩D2

X \ (D̃1 ∪ D̃2), where D̃1, D̃2 are the strict transforms of D1 and
D2 respectively. Then the homomorphism Div(X,M) → Div(X̃), given by sending
Div(U) to itself and D̃(1,1) to the exceptional divisor, is an isomorphism respecting
the pullbacks of divisors in U . Thus under this isomorphism, the strict transform of
a divisor in U in Div(X̃) corresponds to the strict transform in Div(X,M).

While the function µ : Nn
C × Div(X) → Z is linear in the divisor argument, it is

not linear in the first argument as the next examples show.
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Example 4.1.18. Let X = P2, n = 2, D1 = {X1 = 0}, D2 = {X2 = 0}, M =
N2 \ {(1, 0), (0, 1)}. Then D1 ∩ D2 = {(0 : 0 : 1)}, and the divisor D = {X1 = X2}
has pullback pr∗M D = D + D̃(1,1). In particular,

1 = µ((1, 1), D) ≥ µ((1, 0), D) + µ((0, 1), D) = 0

For an example with no multiplicities equal to zero, we can take

3 = µ((3, 3), D) ≥ µ((2, 1), D) + µ((1, 2), D) = 2.

However, µ is a concave function in the second argument, as the next lemma
shows. We will exploit this fact in Lemma 4.2.16 to understand the Fujita invariant
and the b-invariant of line bundles.

Lemma 4.1.19. Let (X,M) be a smooth pair. Then for all (m, c), (m′, c′) ∈ Nn
C and

for every effective divisor D on X,

µ((m + m′, c̃), D) ≥ µ((m, c), D) + µ((m′, c′), D), (4.1.1)

for every connected component c̃ ∈ Cm+m′ of c ∩ c′. Furthermore, for any t ∈ N∗

µ((tm, c), D) = tµ((m, c), D). (4.1.2)

Therefore, for all λ, λ′ ∈ Q with λm ∈ Nn and λm′ ∈ Nn,

µ((λm + λ′m′, c̃), D) ≥ λµ((m, c), D) + λ′µ((m′, c′), D). (4.1.3)

Proof. Note that inequality (4.1.3) follows directly from combining the other two
statements.

We will first focus on equality (4.1.2). If Im,c and Itm,c are the maximal ideals of

Rm,c and Rtm,c, respectively, then Iktm,c ∩ Rm,c = I
⌈k/t⌉
m,c for every k ∈ N, where we

use the natural embedding Rm,c ⊂ Rtm,c. This directly implies the equality.
To prove inequality (4.1.1), we let OX,c̃ be the local ring at c̃ and define Rm,c̃ to

be the ring obtained by adjoining all f
1/mi

i with mi > 0 to OX,c̃, where fi is a local
equation of Di. (This is similar to the ring in Definition 4.1.9, but we only localize at
c̃ rather than at c.) In order to compare the different rings Rm,c̃, Rm′,c̃, Rm+m′,c̃, we
embed them into the larger ring R(m+m′)mm′,c̃, (where (m + m′)mm′ is defined by
coordinate-wise multiplication and addition). These inclusions fit into the commuta-
tive diagram

Rm,c̃

OX,c̃ Rm+m′,c̃ R(m+m′)mm′,c̃.

Rm′,c̃

For m̃ = m,m′,m + m′, we let Im̃ be the ideal of R(m+m′)mm′,c̃ generated by

{f1/m̃i

i | i ∈ {1, . . . , n}, m̃i > 0}.
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Note that for all µ̃ ∈ N, the ideal I µ̃m̃ is generated by the elements
∏n

i=1
m̃i>0

f
ai/m̃i

i for

a ∈ Nn satisfying
∑n

i=1
m̃i>0

ai ≥ µ̃. For ease of notation, let us assume that mi,m
′
i > 0

for all i ∈ {1, . . . , n}. For µ, µ′ ∈ N, the intersection Iµm ∩ I
µ′

m′ is generated by

elements x which can both be written as x =
∏n

i=1 f
ai/mi

i with
∑n

i=1 ai ≥ µ and as

x =
∏n

i=1 f
a′
i/m

′
i

i with
∑n

i=1 a
′
i ≥ µ′, where a1, . . . , an, a

′
1, . . . , a

′
n ∈ N.

For all i ∈ {1, . . . , n}, let vi be the valuation on the fraction field K(X) corre-
sponding to the divisor Di. Then vi(fi) = 1 and vi(fj) = 0 for all j ̸= i as Di and Dj

are distinct prime divisors on X. Up to scaling, this valuation extends to a discrete

valuation ṽi on the fraction field of R(m+m′)mm′,c̃ satisfying ṽi(f
1/(mim

′
i(mi+m′

i))
i ) = 1

and ṽi(fj) = 0 for all j ̸= i. In particular, we see that the valuation of x with respect

to ṽi is both aim
′
i(mi +m′

i) and a′imi(mi +m′
i) so ai

mi
=

a′
i

m′
i
.

From this equality we obtain

x =

n∏
i=1

f
(ai+a′

i)/(mi+m′
i)

i ,

which implies that x ∈ Iµ+µ′

m+m′ . Thus we conclude Iµm ∩ I
µ′

m′ ⊂ Iµ+µ′

m+m′ , and by taking
µ = µ((m, c), D) and µ′ = µ((m′, c′), D), we obtain inequality (4.1.1).

4.2 Geometry of the Picard group of a pair

In this section we introduce the Picard group and the effective cone of a pair.

Definition 4.2.1. We say that a divisor on (X,M) is principal if it is the image of
a principal divisor on X under the homomorphism pr∗M : Div(X)→ Div(X,M). We
say that two divisors D,D′ on (X,M) are linearly equivalent if D−D′ is a principal
divisor.

Definition 4.2.2. We define the Picard group of (X,M) as

Pic(X,M) = Div(X,M)/{principal divisors}.

By the definition, the pullback pr∗M : Div(X) → Div(X,M) induces a homomor-
phism

Pic(X)→ Pic(X,M),

which we will also often denote by pr∗M , by abuse of notation. We will denote the
induced homomorphisms on Q-divisors Div(X)Q → Div(X,M)Q and on Q-divisor
classes Pic(X)Q → Pic(X,M)Q by pr∗M as well. For a (Q-)divisor D, we will denote
the corresponding (Q-)divisor class by [D].

Definition 4.2.3. We define two Q-divisors D,D′ on a pair (X,M) to be Q-linearly
equivalent if the image of D −D′ in Pic(X,M)Q is 0.

Example 4.2.4. If (X,M) is a smooth pair corresponding to Darmon points with
associated root stack (X, m

√
D) as in Section 3.5, then [Cad07, Corollary 3.12] implies

that the map Pic(X,M)→ Pic(X, m
√
D), given by sending D̃mie to the Cartier divisor
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1
mi
Di for all i ∈ {1, . . . , n} with mi < ∞, is an isomorphism. Furthermore, this

isomorphism is compatible with the pullback homomorphisms of Pic(X)→ Pic(X,M)
and Pic(X)→ Pic(X, m

√
D).

By taking all multiplicities m1, . . . ,mn to be infinite, we obtain the following
special case of the previous example.

Example 4.2.5. Let X be a smooth variety and let U ⊂ X be an open subvariety
such that X \ U is a strict normal crossings divisor. If (X,M) is the smooth pair
corresponding to integral points on U , then Div(X,M) = Div(U) so Pic(X,M) =
Pic(U).

By construction of the Picard group of a pair, we have a natural surjection
Pic(X,M) → Pic(U) by restricting a divisor on (X,M) to U . More generally, we
can define restriction maps between the Picard groups of pairs.

Definition 4.2.6. Let (X,M) and (X,M ′) be two smooth pairs for the same choice
of divisors D1, . . . , Dn, such that ΓM ′ ⊂ ΓM . Then we define the restriction (of
divisors) to (X,M ′) to be the homomorphism

Div(X,M)→ Div(X,M ′)

which sends Div(X,M ′) ⊂ Div(X,M) to itself and sends D(m,c) to 0 if (m, c) ∈ ΓM,C
but m ̸∈ ΓM ′ . This homomorphism induces a homomorphism

Pic(X,M)→ Pic(X,M ′),

which we will also refer to as the restriction (of divisor classes) to (X,M ′).

Note that these restrictions are always surjective homomorphisms. The cokernel
of the homomorphism pr∗M : Pic(X)→ Pic(X,M) is generated by [D̃m,c] for (m, c) ∈
ΓM,C , and is thus finitely generated. Consequently, if Pic(X) is finitely generated,
then Pic(X,M) will be as well, as it requires at most #ΓM,C additional generators.

Example 4.2.7. If (X,M) is a smooth pair for the Darmon points on the Cam-

pana pair
(
X,
∑n

i=1

(
1− 1

mi

)
Di

)
, then Div(X,M) is naturally identified with

Div(U)⊕Z
(

1
m1
D1

)
⊕· · ·⊕Z

(
1

mn
Dn

)
, and the homomorphism Pic(X)→ Pic(X,M)

is injective with cokernel
Z/m1Z× · · · × Z/mnZ.

Example 4.2.8. In the previous example, if we take X = Pn−1
K , and we let

D1, . . . , Dn be the coordinate hyperplanes, then

Pic(X,M) ∼= Zn/

{
(a1, . . . , an) ∈ Zn

∣∣∣∣∣
n∑

i=1

ai
mi

= 0

}
.

In particular, if gcd(mi,mj) = 1 for all distinct i, j ∈ {1, . . . , n}, then Pic(X,M) ∼= Z.
On the other hand, if m = m1 = · · · = mn, then Pic(X,M) ∼= Z× (Z/mZ)n−1. This
shows that Pic(X,M) can contain nontrivial torsion even when Pic(X) is torsion-free.
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The previous example showed that the torsion of Pic(X,M) is slightly subtle, and
depends on M , rather than only on X. However, for a proper pair, the rank of its
Picard group is very simple to describe.

Proposition 4.2.9. If (X,M) is a proper smooth pair over a field K, then pr∗M is
injective on Div(X) and on Pic(X). Moreover

rank Pic(X,M) = rank Pic(X) + #ΓM,C − n.

Proof. Since (X,M) is proper, for each i = 1, . . . , n there exists an element mi :=
miei ∈ ΓM for some integer mi > 0. In particular, the coefficient of D̃mi,c in pr∗M Di

is mi for c = Di, while for all j ∈ {1, . . . , n} different from i, the coefficient of D̃mi,c

in pr∗M Dj is zero, as Di is not contained in Dj . Similarly, for all D ∈ Div(U), the

the coefficient of D̃mi
in pr∗M D is also zero. Since, furthermore, the restriction of

pr∗M to Div(U) is injective, pr∗M is indeed injective. This directly implies that the
homomorphism on the Picard groups is also injective.

If we let (X,M ′) ⊂ (X,M) be the pair with M′ = {(0, . . . , 0),m1, . . . ,mn}, then
we can consider the restriction Pic(X,M)→ Pic(X,M ′). The kernel of this restriction
is the free abelian group generated by the divisor classes [D̃m,c] for (m, c) ∈ ΓM,C
with m ̸∈ ΓM ′ . In particular, it is a free abelian group of rank #ΓM,C − n. By
Example 4.2.7, the cokernel of pr∗M ′ : Pic(X) → Pic(X,M ′) is finite. As (X,M ′)
is proper, this implies rank Pic(X,M) = rank Pic(X), so the rank of Pic(X,M) is
rank Pic(X) + #ΓM,C − n.

Now we will define the canonical divisor class of a pair.

Definition 4.2.10. For a smooth pair (X,M) over a field K of characteristic 0, we
define the ramification divisor of (X,M) to be the effective divisor

R :=
∑

(m,c)∈ΓM,C

(
−1 +

n∑
i=1

mi

)
D̃m,c.

The canonical (divisor) class K(X,M) ∈ Pic(X,M) of a smooth pair (X,M) is

K(X,M) := pr∗M KX +R

= pr∗M

(
KX +

n∑
i=1

[Di]

)
−

∑
(m,c)∈ΓM,C

[D̃m,c].

Thus the canonical class is defined in such a way that it satisfies an analogue of the
Hurwitz formula for morphisms of curves (see e.g. [Har77, Chapter IV, Proposition
2.3]). If (X,M) is a smooth pair corresponding to Darmon points on a Campana pair
(X,Dm), then the canonical divisor of (X,M) agrees with the canonical divisor of
the root stack (X, m

√
D), see for example [VZ22, Proposition 5.5.6] for the case when

X is a curve.

Assumption 4.2.11. For the rest of the thesis we assume that X is a rationally
connected proper variety over a field of characteristic 0.
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There are two reasons for this assumption. One reason is that Conjecture 1.2.2
only applies to rationally connected varieties. Furthermore, if X is rationally con-
nected then the Albanese variety of X is trivial, and thus its dual Pic0(X) is also
trivial. Hence, Pic(X,M) is a finitely generated abelian group for every smooth pair
(X,M). We will now introduce the effective cone.

Definition 4.2.12. The effective cone of a smooth pair (X,M) is the cone

Eff1(X,M) ⊂ Pic(X,M)R

generated by effective divisors on (X,M). Its topological closure is the pseudo-
effective cone of (X,M)

Eff
1
(X,M) ⊂ Pic(X,M)R.

We also similarly write Eff1(X) and Eff
1
(X) for the effective and pseudo-effective

cones of X.

The effective cone of a proper pair is strongly convex, as the next proposition
shows.

Proposition 4.2.13. Let (X,M) be a smooth proper pair. Then Eff1(X,M) is
strictly convex, i.e.

Eff1(X,M) ∩ −Eff1(X,M) = {0}.

Proof. We will argue by contradiction. Suppose that there exists an element
E ∈ Eff1(X,M) satisfying −E ∈ Eff1(X,M). Since Eff1(X,M) is generated by
effective divisors, Eff1(X,M) ∩ Q is dense in Eff1(X,M). This implies that there
exists an integer m and nonzero effective divisors D1, D2 on (X,M) such that
mE − [D1],−mE − [D2] ∈ Eff1(X,M). The sum D := D1 +D2 is a nonzero effective
divisor such that −[D] ∈ Eff1(X,M). This implies that −D is Q-linearly equivalent
to an effective Q-divisor D′. It follows that D +D′ is an effective Q-divisor which is
Q-linearly equivalent to 0. Thus there exists a positive integer m such that m(D+D′)
is linearly equivalent to an effective divisor and m(D + D′) = pr∗M div(f) for some
rational function on X. The function f cannot have any poles on U , and since (X,M)
is proper, there exist positive integers m1, . . . ,mn such that m1e1, . . . ,mnen ∈ ΓM .
This implies that f cannot have any poles at the divisors D1, . . . , Dn either, which
implies that f is a regular function on X and thus f is constant, as X is proper. We
conclude that D +D′ = 0. This contradicts the fact that D is nonzero, so E cannot
exist.

Using the effective cone, we will now define the Fujita invariant and the b-invariant
of a pair.

Definition 4.2.14. Let (X,M) be a smooth pair over a field K of characteristic 0.
Let L be a nef and big Q-divisor class on X. We define the Fujita invariant of (X,M)
with respect to L to be

a((X,M), L) = inf{t ∈ R | tpr∗M L+K(X,M) ∈ Eff
1
(X,M)}.

We call a((X,M), L) pr∗M L+K(X,M) ∈ Eff
1
(X,M) the adjoint divisor class of L with

respect to (X,M). We define the b-invariant b(K, (X,M), L) to be the codimension
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of the minimal supported face of Eff
1
(X,M) which contains the adjoint divisor class

of L with respect to (X,M).

Note that the Fujita invariant is strictly positive if and only if K(X,M) is not
pseudoeffective.

That there need not exist a nef and big Q-divisor class L such that pr∗M L =
−K(X,M), so the b-invariant may be smaller than the rank of the Picard group of
(X,M) for all choices of L, as the next example illustrates.

Example 4.2.15. Let (X,M) be the smooth pair over K corresponding to the Cam-

pana points on
(
X,
∑n

i=1

(
1− 1

mi

)
Di

)
for a rationally connected variety X. Then

Proposition 4.2.9 implies that

rank Pic(X,M) = rank Pic(X) +

n∑
i=1

(mi − 1),

where we use the description of ΓM from Example 4.1.6 and the fact that the set of
components Cmei

is just {Di} for any positive integer m and i ∈ {1, . . . , n}. However,
for any divisor L ∈ Div(X), the coefficient of D̃mei

in L for mi ≤ m ≤ 2mi−1 is sim-
ply aim, where ai is the coefficient of Di in L. This follows from the equality (4.1.2)
combined with the fact that µ(mei, D) = 0 for all prime divisors D ̸= Di on X. There-

fore, if the coefficient of D̃miei in pr∗M L + R = pr∗M L +
∑n

i=1

∑2mi−1
m=mi

(m − 1)D̃mei

is nonnegative for some i ∈ {1, . . . , n}, then the coefficient of D̃mei
in pr∗M L + R

is positive for integers m with mi < m ≤ 2mi − 1. Consequently, we have
b(K, (X,M), L) ≤ rank Pic(X) for all big and nef divisors L.

In fact, for computing the Fujita invariant and the b-invariant, we only need to
consider small generators m ∈ ΓM , which often considerably simplifies computations.

Lemma 4.2.16. Let (X,M) be a smooth pair over a field K of characteristic 0 and
let L be a big and nef Q-divisor on X. Let P be the polyhedron given as the convex
hull of the set

{m + x ∈ Rn |m ∈ ΓM ,x ∈ Rn
≥0}

and let ∂P and V (P ) be its boundary and its set of vertices respectively. Define pairs
(X,M ′′) ⊂ (X,M ′) ⊂ (X,M) by setting M′ = ΓM ∩∂P and M′′ = ΓM ∩V (P ). Then

a((X,M), L) = a((X,M ′), L) = a((X,M ′′), L)

and
b(K, (X,M), L) = b(K, (X,M ′), L).

Proof. If ΓM,C = ∅, then P is empty and (X,M) = (X,M ′) = (X,M ′′) is the pair
with M = {(0, . . . , 0)}, so the lemma is trivially satisfied. Now assume ΓM,C ̸= ∅ and
let (m, c) ∈ ΓM,C be an element such that m is not on the boundary of the polyhedron.

Then there exist (m1, c1), . . . , (mT , cT ) ∈ ΓM ′,C such that m =
∑T

t=1 λtmt for some

real numbers λ1, . . . , λT > 0 satisfying
∑T

t=1 λt > 1 and such that c is a component of⋂T
t=1 ct. If L′ ∈ Div(X)Q is a Q-divisor, such that for all t ∈ {1, . . . , T} the coefficient

of D̃mt,ct in pr∗M L′ ∈ Div(X,M) is at least 1, then Lemma 4.1.19 implies that the
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coefficient of D̃m,c in pr∗M L′ ∈ Div(X,M) is at least
∑T

t=1 λt > 1. This implies that
for any L ∈ Pic(X)Q and a ∈ Q such that

a pr∗M L+K(X,M) = pr∗M

(
L+KX +

n∑
i=1

[Di]

)
−

∑
(m,c)∈ΓM,C

[D̃m,c] ∈ Pic(X,M)Q

is an effective Q-divisor class, apr∗M L+K(X,M) is represented by an effective Q-divisor

such that the coefficient of D̃m,c is at least −1 +
∑T

t=1 λt > 0. This implies that the

minimal face of Eff
1
(X,M) containing the adjoint divisor class of an big and nef

Q-divisor class L contains D̃m,c. Thus we see that a((X,M), L) = a((X,M ′), L)
and b(K, (X,M), L) = b(K, (X,M ′), L), as desired. The proof of the equality
a((X,M), L) = a((X,M ′′), L) is entirely analogous.

More generally, the Fujita invariant and the b-invariant are smaller on smaller
pairs.

Proposition 4.2.17. Let (X,M) ⊂ (X,M ′) be smooth pairs over a field K of char-
acteristic 0 and let L be a big and nef Q-divisor on X. Then we have

(a((X,M), L), b(K, (X,M), L)) ≤ (a((X,M ′), L), b(K, (X,M ′), L))

in the lexicographic ordering.

Proof. The proof is essentially the same argument as in Lemma 4.2.16 by using Lemma
4.1.19.

Remark 4.2.18. By Lemma 4.2.16, the Fujita invariant and the b-invariant only
depend on the polyhedron generated by M, rather than M itself. Therefore the
Conjecture 1.2.2 satisfies a form of purity: the order of growth of the counting function
only depends on the smallest elements in M.

Example 4.2.19. As simple example for the previous remark, Conjecture 1.2.2 im-
plies that the Q-rational points in projective space with coordinates both squarefree
and pairwise coprime have a positive density in the full set of rational points, when
the points are ordered by their Weil height.

There is a natural generalization of rigid divisors to pairs.

Definition 4.2.20. Let D ∈ Div(X,M)Q be a Q-divisor on a smooth pair (X,M)
with X rationally connected. We say that D is rigid if D is effective and it is the only
effective Q-divisor in its Q-linear equivalence class. For a big and nef Q-divisor L on
X, we say that L is adjoint rigid with respect to (X,M) if a((X,M), L) > 0 and the
adjoint divisor class a((X,M), L) pr∗M L+K(X,M) is represented by a rigid Q-divisor.

In Chapter 5, we will consider non-proper pairs to which our counting methods
for M-points apply, by imposing a condition on the pair depending on the Q-divisor
defining the height. Such pairs will play an instrumental role in proving Theorem
1.2.7 for proper pairs.
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Definition 4.2.21. Let X be a smooth proper variety and let L ∈ Pic(X)Q be a big
and nef Q-divisor class. A smooth pair (X,M) is quasi-proper with respect to L if
there exists a smooth proper pair (X, M̃) containing (X,M) such that a((X,M), L) =
a((X, M̃), L).

Proposition 4.2.22. Let (X,M) be a smooth pair which is quasi-proper with respect
to some big and nef Q-divisor class. Then a proper pair (X, M̃) as in Definition
4.2.21 can be found by adjoining the elements me1, . . . ,men to M for any sufficiently
large integer m.

Proof. For any proper pair (X,M) satisfying a((X,M), L) = a((X,M), L), there are
positive integers m1, . . . ,mn such that m1e1, . . . ,mnen ∈M, and Proposition 4.2.17
implies that the pair (X,M ′) given by M′ = {m1e1, . . . ,mnen} ∪M has the same
Fujita invariant as (X,M) and (X,M). Now let m ≥ m1, . . . ,mn be an integer and
let (X, M̃) be the pair given by M̃ = {me1, . . . ,men} ∪M. The pair (X,M ′′) given
by M′′ = M′ ∪ M̃ has the same Fujita invariant as (X,M ′) by Lemma 4.2.16, and
Proposition 4.2.17 implies

a((X, M̃), L) ≤ a((X,M ′′), L) = a((X,M), L).

Now since (X,M) ⊂ (X, M̃), we must have a((X, M̃), L) = a((X,M), L) by Proposi-
tion 4.2.17.

For a pair (X, M̃) as in Proposition 4.2.22, there is an inclusion ΓM ⊂ ΓM̃ giving

a restriction homomorphism Pic(X, M̃) → Pic(X,M) as in Definition 4.2.6. In this
setting, we can view the condition a((X,M), L) = a((X, M̃), L) as the statement that
the adjoint divisor of L with respect to (X,M) is the restriction of the adjoint divisor
of L with respect to (X, M̃).

Example 4.2.23. Let X be a rationally connected smooth proper variety such that
−KX is big, and let D be a strict normal crossings divisor on X which is rigid. Then
the pair (X,M) corresponding to the integral points on the open U = X \D is quasi-
proper for any any big and nef Q-divisor class L = −KX + aD with a > −1. We can
take the proper pair (X, M̃) to be the pair corresponding to the Darmon points on(
X,
∑n

i=1

(
1− 1

m

)
Di

)
, where D1, . . . , Dn are the irreducible components of D and m

is a positive integer such that −1 + 1
m ≤ a. In particular, if a ≥ 0, then we can take

(X, M̃) to be the trivial pair. This follows from the rigidity of D combined with the
simple calculation

pr∗
M̃
L+K(X,M̃) =

n∑
i=1

(am+ (m− 1))D̃mei
,

which corresponds to
∑n

i=1

(
a+ 1− 1

m

)
Di under the identification in Example 4.2.4.

This implies a((X,M), L) = a((X, M̃), L) = 1, as desired.

Example 4.2.24. As a special case of the previous example, we can take X =
Bl(0:0:1) P2, let D1 be the exceptional divisor and take M = {0}. Then for any
a ∈ (−1, 1] ∩ Q, the Q-divisor class L = KX + aD is big and nef, and (X,M) is
quasi-proper with respect to L.
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4.3 Rationally connected pairs

In modern times, Manin’s Conjecture is often formulated for rationally connected
varieties, see for example [LST22, Conjecture 1.2]. The notion of rationally connected
varieties (see e.g. [KMM92, Definition-Remark 2.2]) has a natural extension to smooth
proper pairs.

Definition 4.3.1. A smooth proper pair (X,M) over a field K is rationally con-
nected if there exists a nonempty open subvariety V ⊂ X such that for each alge-
braically closed field L/K and every two points p1, p2 ∈ V (L), there exists a ratio-
nal curve C ⊂ XL containing both points such that C is the image of a morphism
f ∈ (X,Mmon)(P1

L), where (X,Mmon)(P1
L) is as in Definition 2.1.17.

In other words, a pair (X,M) is rationally connected if for any two general points
on X there is a projective rational curve passing through them respecting the con-
ditions imposed by Mm. In particular, if (X,M) is rationally connected, then X is
rationally connected as well. The projectivity of the curve is crucial here, as any
curve C on X not contained in the divisors D1, . . . , Dn has a nonempty open subset
C ′ ⊂ C avoiding these divisors.

One reason to consider such pairs in Conjecture 1.2.2 is that they have a good
reason for having plenty of M-points after an extension of the ground field. This is
because the images of rational points under f ∈ (X,Mmon)(P1

K) are M-points over
OS for some finite set of places S ⊂ ΩK , as the next proposition shows.

Proposition 4.3.2. Let (X,M) be a pair over a number field K and let f ∈
(X,Mmon)(P1

K). Then for every finite set of places S ⊂ ΩK and every OS-integral
model (X ,M), there exists a finite set of places S′ ⊃ S such that f extends to
f̃ ∈ (X ,Mmon)(P1

OS′ ). Furthermore, for any P ∈ P1
K(K),

f(P ) ∈ (X ,Mmon)(OS′)

if f(P ) lies in U .

Proof. By spreading out [Poo17, Theorem 3.2.1], we can find a set of places S′ con-
taining S such that f : P1

K → X lifts to a morphism f̃ : P1
OS′ → X . The pullbacks

f̃∗D1, . . . , f̃
∗Dn are effective divisors on P1

OS′ . By further enlarging S′ if necessary,
we can ensure that these divisors have no components supported above a prime p in
OS′ , which ensures that f̃ ∈ (X ,Mmon)(P1

OS′ ). Let P ∈ P1
K(K). By the valuative

criterion of properness, P corresponds to an unique integral point P̃ : SpecOS′ → P1.
If p is a prime of OS′ , and we denote the coefficient of p in (f̃ ◦ P̃ )∗Di = P̃ ∗(f̃∗Di)
by mi for all i = 1, . . . , n, then (m1, . . . ,mn) ∈Mmon since Mmon is a monoid.

4.4 Quasi-Campana points and the log-canonical
divisor

In this section we specialize the Conjecture 1.2.2 to Campana points, weak Campana
points and Darmon points as defined in Definition 2.1.19. In particular, we will clarify
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the relation of Conjecture 1.2.2 with the conjecture [PSTVA21, Conjecture 1.1] on
Campana points of bounded height. In order to uniformly discuss these different kinds
of points, we introduce the notion of a quasi-Campana pair.

Definition 4.4.1. Let m1, . . . ,mn ∈ N ∪ {∞}. A pair (X,M) is quasi-Campana

for the Campana pair (X,Dm), where Dm =
∑n

i=1

(
1− 1

mi

)
Di, if the following

conditions are satisfied:

1. for all i ∈ {1, . . . , n} with mi =∞ we have wi = 0 for all w ∈M,

2. miei ∈ M for all i ∈ {1, . . . , n} with mi < ∞, where ei is the i-th standard
basis vector of Zn,

3. for all w ∈M \ {0, . . . , 0},
∑n

i=1
wi

mi
≥ 1.

Examples of quasi-Campana pairs are given by the pairs for (weak) Campana
points and Darmon points. In the theory of Campana points, the log-canonical class
KX + Dm plays a crucial role. We give an intrinsic definition of the log-canonical
class on a pair (X,M) as the “best approximation from below” of the canonical class
K(X,M) by a Q-divisor class on X.

Definition 4.4.2. Let (X,M) be a smooth proper pair over a field K such that X
is rationally connected. A Q-divisor class D on X is called the log-canonical class for
(X,M) if K(X,M) − pr∗M D ∈ Eff1(X,M) and for any Q-divisor class D′ satisfying

the same property, we have D − D′ ∈ Eff1(X). We will write K(X,M),log for the
log-canonical class.

Note that since Eff1(X,M) is strictly convex by Proposition 4.2.13, any two divi-
sors whose classes are log-canonical are Q-linearly equivalent, so the above definition
makes sense.

For the pair corresponding to Campana points, the log-canonical divisor is simply
KX +Dm.

Proposition 4.4.3. Let (X,M) be a smooth proper quasi-Campana pair for the Cam-
pana pair (X,Dm). Then K(X,M),log = KX + Dm is the log-canonical divisor class
for (X,M). Furthermore, if (X,M) is a pair corresponding to Darmon points, then
pr∗M K(X,M),log = K(X,M).

Proof. The definition of the log-canonical class K(X,M) immediately implies that
K(X,M) − pr∗M (KX + Dm) is an effective Q-divisor class on (X,M). Addition-
ally, if (X,MDarmon) is the pair corresponding to Darmon points on (X,Dm) then
pr∗MDarmon

(KX + Dm) = K(X,MDarmon), so KX + Dm is the log-canonical class for
(X,MDarmon). For other quasi-Campana pairs for the Campana pair (X,Dm), the
inclusion ΓMDarmon,C = {m1e1, . . . ,mnen} ⊂ ΓM,C induces a group homomorphism
Pic(X,M) → Pic(X,MDarmon) compatible with the pullback homomorphisms pr∗M
and pr∗MDarmon

. This map sends effective divisor classes to effective divisor classes
and K(X,M) to K(X,MDarmon). Thus for any Q-divisor class D on X such that
K(X,M) − pr∗M D is effective, K(X,MDarmon) − pr∗MDarmon

D is effective as well. This

implies Dm − D ∈ Eff1(X), as we saw that KX + Dm is the log-canonical class for
(X,MDarmon). Therefore KX +Dm is the log-canonical class for (X,M).
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There are various other pairs for which the log-canonical class exists, as the next
example shows.

Example 4.4.4. Let (X,M) be a smooth proper pair such that Pic(X)Q ∼= Q and
such that Eff1(X,M) is a rational polyhedral cone. Then there exists a log-canonical
divisor on X for (X,M). This is because for any nonzero effective divisor D on X
there is a largest a ∈ Q that satisfies K(X,M)− pr∗M a[D] ≥ 0, so K(X,M),log = a[D] is
the log-canonical class. Here the assumption on the effective cone ensures that aD is
a Q-divisor, rather than just an R-divisor.

However, the log-canonical class need not exist if the pair is not quasi-Campana,
as the next example shows.

Example 4.4.5. Let X = Bl(0:0:1) P2. Let D1 = D be the strict transform of a line
passing through (0 : 0 : 1) ∈ P2 and let D2 = E be the exceptional divisor. Let
M ⊂ N2 be the monoid generated by (3, 0), (0, 3) and (1, 1). Then the effective cone
of X is generated by D and E, and a Q-divisor D′ = (−2 − a)D + (−1 − b)E =
KX + (1− a)D+ (1− b)E satisfies K(X,M)− pr∗M D′ ≥ 0 if and only if 3a ≥ 1, 3b ≥ 1
and a + b ≥ 1. There is no solution (a, b) to this system of inequalities with a and
b simultaneously minimal. Therefore there does not exist a log-canonical class on X
for (X,M).

For determining the Fujita invariant of a divisor class, we can use the log-canonical
class rather than the canonical class of the pair.

Proposition 4.4.6. Let (X,M) be a smooth proper pair over a field K. Assume that
that there exists a log-canonical class K(X,M),log for (X,M). Let L be a big and nef
Q-divisor class on X. Then

a((X,M), L) = inf{t ∈ R | tL+K(X,M),log ∈ Eff
1
(X)}.

Proof. Since L is big, and thus an effective Q-divisor class, the infimum of all t ∈ R
such that tL + K(X,M),log is effective is the same as the infimum of all t ∈ R such
that tL + K(X,M),log is pseudo-effective. For any Q-divisor class D on X, we have

D + K(X,M),log ∈ Eff1(X) if and only if pr∗M D + K(X,M) ∈ Eff1(X,M), by the
definition of the log-canonical class applied to D′ = −D. By taking D = tL, we find
the desired identity for a((X,M), L).

Similarly, we can use the log-canonical class to determine whether a divisor class
is adjoint rigid.

Proposition 4.4.7. Let (X,M) be a proper quasi-Campana pair and let L be a big
and nef Q-divisor on X. Then a((X,M), L) pr∗M L + K(X,M) is rigid if and only if
a((X,M), L)L+KX +Dm is rigid.

Proof. Let D′ ∈ Div(X) be a representative of the canonical divisor KX , and set
D = pr∗M D′+

∑
(m,c)∈ΓM,C

(−1 +
∑n

i=1mi) D̃m,c and Dlog = D′+Dm. Then D, Dlog

represent the Q-divisor classes K(X,M) and KX +Dm on (X,M) and X, respectively.
A direct calculation shows thatD−pr∗M Dlog is an effective divisor which vanishes on U
and on the divisors corresponding to the elements miei ∈M. Thus if E ∈ Div(X)Q
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and D̃ is either a prime divisor on U or D̃ = D̃miei for i ∈ {1, . . . , n}, then the
coefficient of D̃ in pr∗M (Dlog +E) is equal to the coefficient of D̃ in D+ pr∗M E. Since

the coefficient of D̃miei
in pr∗M (Dlog +E) is mi times the coefficient of Di in Dlog +E

for all i ∈ {1, . . . , n}, this implies that Dlog + E is effective if and only if D + pr∗M E
is effective. Therefore, Dlog + E is rigid if and only if D + pr∗M E is rigid.

However, in general the log-canonical class need not be adjoint rigid when it exists.

Example 4.4.8. Let X = P2
K and let D1 and D2 be two distinct lines in P2

K . As
in Example 4.4.5 we let M ⊂ N2 be the monoid generated by (3, 0), (0, 3) and (1, 1).
The canonical divisor class K(X,M) of (X,M) is represented by the divisor

D̃ = −pr∗M (−2D1 −D2 +D1 +D2)− D̃(3,0) − D̃(0,3) − D̃(1,1)

= −4D̃(3,0) − D̃(0,3) − 2D̃(1,1).

The Picard group of the pair, Pic(X,M) ∼= Z2 × Z/3Z, is generated by the di-
visors D̃(3,0), D̃(0,3), D̃(1,1), where 3D̃(3,0) is linearly equivalent to 3D̃(0,3). Both

E1 = − 4
3D1− 2

3D2 and E2 = − 5
3D1− 1

3D2 represent the log-canonical classK(X,M),log.

Since pr∗M E1 + D̃ and pr∗M E2 + D̃ are effective, E1 and E2 are not adjoint rigid for
the pair (X,M).

Remark 4.4.9. For a quasi-Campana pair, the polyhedron in Lemma 4.2.16 is simply
given by

P =

{
x ∈ [0,∞)ΓM,C

∣∣∣∣∣
n∑

i=1

xi
mi
≥ 1

}
.

This description of the polyhedron implies that for quasi-Campana pairs the b-
invariant can be computed using the effective cone of X, rather than having to use
the full effective cone of (X,M). This is done by replacing the canonical class with
the log-canonical class, and by adding a correction factor to the b-invariant.

Proposition 4.4.10. Let (X,M) be a smooth proper quasi-Campana pair, where X
is a rationally connected variety. Assume that at least one of the following conditions
hold:

1. Eff1(X) = Eff
1
(X),

2. (X,M) is a pair corresponding to Darmon points or Campana points.

Let L be a big and nef Q-divisor class on X. Then

b(K, (X,M), L) = b(K,X,KX +Dm, L) + b′(K, (X,M), L),

where b(K,X,KX + Dm, L) is the codimension of the minimal face F of Eff
1
(X)

containing E = a((X,M), L)L+KX +Dm, and

b′(K, (X,M), L) = −n′ + #IM,C ,

where n′ is the number of divisors D1, . . . , Dn whose class does not lie in F . The set
IM,C is the set of (w, c) ∈ ΓM,C satisfying

∑n
i=1

wi

mi
= 1 and µ((w, c), D) = 0 for all
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effective divisors D whose class lies in F , where µ is given in Definition 4.1.9. In
particular, if L = −KX −Dm, then

b(K, (X,M), L) = rank Pic(X)− n+ #

{
(w, c) ∈ ΓM,C

∣∣∣∣ n∑
i=1

wi

mi
= 1

}
.

Remark 4.4.11. Note that if Eff1(X) is generated by the classes of the divisors
D1, . . . , Dn, , then an element (w, c) ∈ ΓM,C lies in IM,C if and only if

�
∑n

i=1
wi

mi
= 1, and

� wi = 0 for all i = 1, . . . , n with Di ∈ F .

In particular, this is satisfied when X is a toric variety and the divisors D1, . . . , Dn

include the torus-invariant divisors on X.

Remark 4.4.12. The assumption on the effective cone is satisfied for many more
varieties X including Mori dream spaces such as Fano varieties [BCHM10, Corollary
1.3.2].

Proof. By Lemma 4.2.16 and the description of the polyhedron given in Remark 4.4.9,
we can without loss of generality assume that

∑n
i=1

wi

mi
= 1 for all w ∈ ΓM . As a

consequence of this assumption, we have pr∗M (KX + Dm) = K(X,M), as pr∗M Dm −∑
(w,c)∈ΓM,C

D̃w,c = 0.

We denote by F̃ the minimal face of Eff
1
(X,M) containing a((X,M), L) pr∗M L+

K(X,M). The group homomorphism pr∗M : Pic(X) → Pic(X,M) induces a map

Eff
1
(X) → Eff

1
(X,M), which we will also denote by pr∗M . As (X,M) is proper,

this map is injective by Proposition 4.2.9. This fact combined with the equality
pr∗M (KX + Dm) = K(X,M) implies that an D ∈ Eff1(X) lies in F if and only if

pr∗M D ∈ Eff1(X,M). For any (w, c) ∈ ΓM,C such that µ((w, c), D) > 0 for some

effective divisor D whose class is contained in F , the divisor class [D̃w,c] lies in F̃ , as

pr∗M [Di] ∈ pr∗M F ⊂ F̃ .
We write ⟨F⟩ and ⟨F̃⟩ for the vector spaces generated by the cones, and consider

the linear map
f : Pic(X)R/⟨F⟩ → Pic(X,M)R/⟨F̃⟩,

induced by pr∗M . Since the inverse image of F̃ under pr∗M is F , f is an injective map.
Since

dim Pic(X)R/⟨F⟩ = b(K,X,KX +Dm, L)

and
dim Pic(X,M)R/⟨F̃⟩ = b(K, (X,M), L),

we have
b(K, (X,M), L) = b(K,X,KX +Dm, L) + dim coker(f).

If the only solutions w ∈ ΓM to
∑n

i=1
wi

mi
= 1 are of the form miei, then pr∗M gives

an isomorphism Pic(X)R → Pic(X,M)R, so f is an isomorphism, giving

b(K, (X,M), L) = b(K,X,KX +Dm, L).
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In particular, this proves the lemma if the pair corresponds to Campana points or
Darmon points.

Now we assume that Eff1(X) = Eff
1
(X), and we will show that the dimension of

the cokernel of f is −n′ + #IM,C .

For every i ∈ {1, . . . , n}, we have pr∗M Di =
∑

(w,c)∈ΓM,C
wiD̃w,c, which implies

miD̃mei = −
∑

(w,c)∈ΓM,C
w ̸=mei

wiD̃w,c

in coker(f). Thus, the cokernel has {[D̃w,c] | (w, c) ∈ IM,C \ {m1e1, . . . ,mnen}} as a
generating set as a vector space. We will now show that this set is a basis.

First we will show that none of these generators lie in F̃ . Consider (w, c) ∈ ΓM,C
satisfying µ((w, c), D′) = 0 for all effective divisors D′ whose class is contained in F .
If D,DX ∈ Div(X)Q are representatives of L and KX such that a((X,M), L)D+DX+
Dm is effective, then the coefficient of D̃(w,c) in pr∗M (a((X,M), L)D +DX +Dm) ∈
Div(X,M)R is

µ((w, c), a((X,M), L)D +DX +Dm) = 0.

As pr∗M (KX +Dm) = K(X,M), this implies that the coefficient of D̃w,c is zero in every
effective representative of a((X,M), L) pr∗M L+K(X,M), and we see in particular that

[D̃w,c] does not lie in F̃ .
Suppose that

E =
∑

(w,c)∈IM,C\{m1e1,...,mnen}

aw,cD̃w,c

is a Q-divisor on (X,M) which can be written as pr∗M E′ + E1 − E2 for a Q-divisor
E′ on X and two effective Q-divisors E1, E2 on (X,M) such that [E1], [E2] ∈ F̃ . By
modifying E′ if necessary, we can assume that the restriction of E1, E2 to Div(U)Q×
⊕n

i=1Q(D̃miei,Di
) is trivial. Since the restriction of E to Div(U)Q×⊕n

i=1Q(D̃miei,Di
)

is trivial as well, we must have E′ = 0. For any (w, c) ∈ IM,C and any effective

Q-divisor D′ on (X,M) whose class lies in F̃ , the coefficient of D̃w,c in D′ is zero,
as we have shown earlier in the proof. This implies E1, E2 = 0 so E = 0. Thus
{[D̃w,c] | (w, c) ∈ IM,C \ {m1e1, . . . ,mnen}} is a basis of coker(f), and this set
contains −n′ + #IM,C elements, so we have shown

b(K, (X,M), L) = b(K,X,KX +Dm, L)− n′ + #IM,C ,

as desired.

Corollary 4.4.13. Let (X,M) be a smooth proper pair corresponding to either the
Campana points or the Darmon points on a Campana pair (X,Dm), for a rationally
connected variety X, and let L be big and nef Q-divisor class on X. Then

b(K, (X,M), L) = b(K,X,KX +Dm, L),

where b(K,X,KX +Dm, L) is as in Proposition 4.4.10.

Proof. The elements in the set IM,C in Proposition 4.4.10 correspond to the divisors

D̃miei,Di
for i ∈ {1, . . . , n} such that Di does not lie in F . Consequently we see that

b′(K, (X,M), L) = 0, which recovers the result.
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From Corollary 4.4.13, we see that the b-invariant in Conjecture 1.2.2 agrees with
the b-invariant in the conjecture [PSTVA21, Conjecture 1.1] on Campana points of
bounded height. Nevertheless, it is not directly clear whether the former conjecture
implies the latter, as the conjectures impose different geometric conditions on the
Campana pair. In the conjecture on Campana points, the assumption is made that
the Campana pair (X,Dm) is log Fano, meaning that −(KX+Dm) is ample, while the
condition imposed in Conjecture 1.2.2 is that the pair (X,M) is rationally connected.
The following conjecture relates the two conditions.

Conjecture 4.4.14. Assume that the Campana pair (X,Dm) is log Fano. Then any
proper quasi-Campana pair (X,M) for (X,Dm) is rationally connected.

This conjecture is a related to a conjecture by Campana [Cam11b, Conjecture
9.10] on Campana rational connectedness for Campana pairs (see also [CLT24, Con-
jecture 1.4]), which implies Conjecture 4.4.14 for any pair (X,M) corresponding to
the Campana points on (X,Dm).
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5. Counting M-points on split toric

varieties

In this chapter we will prove Theorem 5.2.5, which gives the asymptotic growth of the
number of M-points of bounded height on any quasi-proper toric pair over Q. This
result includes Theorem 1.2.7 as a special case, which shows that Conjecture 1.2.2 is
true for a smooth proper toric pair over Q. In this chapter, we will always take the
integral model (X ,M) to be the toric integral model as in Definition 3.1.1. Before
stating Theorem 5.2.5, we study the geometry of toric pairs.

5.1 Geometry of toric pairs

In this chapter, we use the notation introduced in Chapter 3 for toric varieties and
toric pairs. As indicated in Assumption 4.1.2, we work over a field of characteristic 0.

5.1.1 Torus-invariant divisors

On a toric variety, the intersection of a collection of torus-invariant prime divisors is
a toric variety itself, and thus connected. Therefore, we identify ΓM and ΓM,C , and
we drop the c from our notation in the pairs (m, c) as the connected component c is
uniquely determined by m.

Definition 5.1.1. We write DivT (X) for the torus-invariant divisors on a toric variety
X. Analogously, we call an element of DivT (X,M) :=

⊕
m∈ΓM

Z(D̃m) a torus-
invariant divisor on (X,M).

Proposition 5.1.2. Let (X,M) be a smooth toric pair. Every divisor D on (X,M)
is linearly equivalent to an torus-invariant divisor on (X,M). Furthermore, if D
is effective, it is linearly equivalent to an effective torus-invariant divisor. Hence the
effective cone Eff1(X,M) is a rational polyhedral cone generated by the torus-invariant
prime divisors on (X,M).

Proof. By [CLS11, Theorem 4.1.3] every divisor on X is linearly equivalent to a
torus-invariant divisor. This directly implies that every divisor on (X,M) is linearly
equivalent to a torus-invariant divisor on (X,M).

The proof of the statement for effective divisors is based on the proof of the
analogous statements for divisors on X given in [CLS11, Proposition 4.3.2, Lemma
15.1.8]. For an effective divisor D on (X,M), let D′ be a torus-invariant divisor
linearly equivalent to it. Let

H0(X,D′) = {f ∈ K(X)× | D′ + pr∗M div f ≥ 0} ∪ {0},

101
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where we write E ≥ 0 for a divisor E on (X,M) to indicate that the divisor is effective.
Then H0(X,D′) is a vector space invariant under the natural torus action on K(X)×.
Hence by [CLS11, Lemma 1.1.16],

H0(X,D′) =
⊕

µ∈N∨

D′+pr∗M divχµ≥0

K · χµ,

where χµ ∈ O(U)× is the character determined by µ : N → Z. Since D is ef-
fective, H0(X,D′) has to be nontrivial, and thus there exists µ ∈ N∨ such that
D′ + pr∗M div(χµ) is an effective torus-invariant divisor linearly equivalent to D.

The next proposition shows that for toric pairs the Picard group can be calculated
using torus-invariant divisors, analogously to the case of toric varieties.

Proposition 5.1.3. Let (X,M) be a smooth toric pair over a field K. There is an
exact sequence

N∨ → DivT (X,M)→ Pic(X,M)→ 0,

where N∨ → DivT (X,M) is the composition of the map N∨ → DivT (X) with the
pullback map DivT (X) → DivT (X,M), where the first map is given by sending a
character to its corresponding divisor. Furthermore, we have an exact sequence

0→ N∨ → DivT (X,M)→ Pic(X,M)→ 0

if and only if the lattice NM from Definition 3.2.2 has finite index in N .

Proof. By Proposition 5.1.2, the group homomorphism DivT (X,M)→ Pic(X,M) is
surjective. The torus-invariant principal divisors on (X,M) are exactly the pullbacks
of torus-invariant principal divisors on X. Thus, the kernel of this homomorphism is
the image of N∨ in DivT (X,M) by [CLS11, Theorem 4.1.3].

The map N∨ → DivT (X,M) is given by

µ 7→ pr∗M div(χµ) =
∑

m∈ΓM

⟨µ, ϕ(m)⟩D̃m,

where ϕ is the homomorphism defined in Definition 3.2.2. This directly implies that
N∨ → DivT (X,M) is injective if and only if {ϕ(m) |m ∈ ΓM} spans NQ as a vector
space, which is equivalent to NM having finite index in N .

Proposition 5.1.4. Let (X,M) be a smooth toric pair over a field of characteristic
0. The canonical class of (X,M) as defined in Definition 4.2.10 is equal to

K(X,M) = −
∑

m∈ΓM

[D̃m].

Proof. By [CLS11, Theorem 8.2.3], the canonical divisor class of a toric variety is

KX = −
n∑

i=1

[Di],

which directly implies the desired identity.
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Notation 5.1.5. We will denote the representative of K(X,M) introduced in Propo-
sition 5.1.4 by

D(X,M) = −
∑

m∈ΓM

D̃m ∈ DivT (X,M).

In the proof of Theorem 5.2.5, we will consider divisors on toric pairs which are
rigid with respect to the torus-invariant divisors, rather than to the full group of
divisors.

Definition 5.1.6. Let D ∈ DivT (X,M)Q be an effective Q-divisor on a smooth toric
pair (X,M). We say that D is toric rigid if D is the only effective torus-invariant
Q-divisor in its Q-linear equivalence class. For a big and nef Q-divisor L on X, we
say that L is toric adjoint rigid with respect to (X,M) if the adjoint divisor class
a((X,M), L) pr∗M L+K(X,M) is represented by a toric rigid effective Q-divisor.

For many toric pairs, toric rigid divisors are just the same as rigid divisors.

Proposition 5.1.7. Let (X,M) be a smooth toric pair. Then every rigid Q-divisor
is toric rigid. If the pullback map DivT (X) → DivT (X,M) is injective, then the
converse also holds.

On a proper toric pair, the pullback map is injective by Proposition 4.2.9. Thus,
on such a pair, toric rigid divisors are the same as rigid divisors.

Proof. If an effective Q-divisor D ∈ Div(X,M)Q is rigid, then Proposition 5.1.2 im-
plies that it has to be torus-invariant, and thus toric rigid.

For the converse, we argue by proof by contrapositive. Let D ∈ DivT (X,M) be
an effective divisor which is not rigid. Then the vector space

H0(X, kD) = {f ∈ K(X)× | D + pr∗M div f ≥ 0} ∪ {0}

considered in Proposition 5.1.2 is at least two dimensional for some positive integer
k. As

H0(X, kD) =
⊕

µ∈N∨

kD+pr∗M divχµ≥0

K · χµ,

this implies that there exist at least one nonzero µ ∈ N∨ such that kD+pr∗M divχµ ≥
0. If DivT (X)→ DivT (X,M) is injective, then divχµ ̸= 0 so D+divχµ is an effective
torus-invariant divisor linearly equivalent to D and thus D is not toric rigid.

In general there may be more toric rigid divisors than rigid divisors, as the next
examples show.

Example 5.1.8. Let (X,M) be the toric pair given by X = P1 and M = {(0, 0)}, i.e.,
the pair corresponding to integral points for the open Gm ⊂ P1. Then DivT (X,M) =
0 so the trivial divisor on (X,M) is toric rigid. On the other hand, Pic(Gm) = 0 so
any effective divisor on (X,M) is linearly equivalent to the trivial divisor, and thus
the trivial divisor is not rigid.

Example 5.1.9. Let X = P1×P1 and let (X,M) be the toric pair corresponding to
the integral points for the open Gm × P1 ⊂ X. Then the previous example implies
that any big and nef Q-divisor on X is toric adjoint rigid with respect to (X,M).
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An analogous statement is true for Hirzebruch surfaces of higher degree.

Example 5.1.10. Let X = ProjP1(OP1⊕OP1(d)) be the Hirzebruch surface of degree
d > 0. Let D2 be the unique prime divisor with self-intersection D2

2 = −d, and let
D1, D3 be the torus-invariant prime divisors intersecting the prime divisor D2. Let
(X,M) be the toric pair corresponding to the open U ′ = X \ (D1 ∪D3). We identify
Pic(X,M) with Pic(U ′) using the natural isomorphism as in Example 4.2.5. Under
this identification, the anticanonical divisor on (X,M) is −K(X,M) = [D2] + [D4] ∈
Pic(U ′), which is a nonzero effective divisor class. Since Pic(U ′) = Z, every divisor
on U ′ is linearly equivalent to a rational multiple of −K(X,M). Consequently, any big
and nef Q-divisor on X is toric adjoint rigid with respect to (X,M).

We finish the section by noticing that toric pairs are rationally connected.

Proposition 5.1.11. A proper toric pair (X,M) over a field K is rationally con-
nected.

Proof. Without loss of generality, we can assume that M is a monoid. Let L be an
algebraically closed field containing K and let L(t) be the field of rational functions
over L in the variable t. Write (XL(t),ML(t)) for the pair over L(t) obtained by
base changing X and D1, . . . , Dn to L(t). This pair has the obvious integral model
(XP1

L
,MP1

L
) over P1

L given by base changing (X,M) to P1
L. Theorem 1.1.3 implies

that the pair (XL(t),ML(t)) satisfies ML-approximation off the place (1 : 0) ∈ P1
L.

Consequently, the embedding

(XP1
L
,MP1

L
)(A1

L) = (X,M)(A1
L)→

∏
v∈ΩL(t)\{(1:0)}

(X,M)(Ov)

has dense image. In particular (X,M)(A1
L) has dense image in (X,M)(L((t))) ×

(X,M)(L((t − 1))). Since U(L) ⊂ (X,M)(L((t))) and U(L) ⊂ (X,M)(L((t − 1))),
this implies that any two points p1, p2 ∈ U(L) are contained in the image of some
function f ∈ (X,M)(A1

L). As M is a monoid and (X,M) is proper, M contains
amult(1:0)(f) ∈ Nn for some positive integer a. Let g : P1

L → P1
L be the map given by

(x : y) 7→ (xa : ya). Then f ◦ g ∈ (X,M)(P1
L) and it contains the points p1 and p2 in

its image. This implies that (X,M) is rationally connected.

5.1.2 Fans and universal torsors for pairs

In [Sal98, Section 11], Salberger verifies Manin’s conjecture for split toric varieties with
the anticanonical height. In order to achieve this, he reduces the counting problem
to estimating the volume of a domain D(B) ⊂ Y (R) in the real locus of the universal
torsor Y of the variety. Afterwards, he uses the fan Σ of X to give a partition of
D(B) into simpler pieces: D(B) =

⋃
σ∈Σmax

D(B, σ). In order to adapt the proof of
Salberger to toric pairs, we thus need appropriate analogues of the fan and of the
universal torsor for toric pairs.

Notation 5.1.12. Let (X,M) be a toric pair over a field K. We let (X,M) be a
proper toric pair with M = M ∪ {diei | mei ̸∈ M for all m ∈ N∗}, where ei ∈ Nn
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denotes the i-th basis vector and d1, . . . , dn are positive integers such that ΓM ⊂ ΓM .
Choose a simplicial fan ΣM refining Σ with rays

ΣM (1) = {ρm |m ∈ ΓM},

where ρm = R≥0ϕ(m). Here we recall that ϕ : Nn → N is the homomorphism given
by (m1, . . . ,mn) 7→

∑n
i=1minρi

. Let ΣM ⊂ ΣM be the subfan given by the cones
whose rays lie in {ρm |m ∈ ΓM}.

Similarly, for a maximal cone σ ∈ ΣM , let (X,M(σ)) be the toric pair given by

M = M ∪ {diei | ρi ⊂ σ(1), mei ̸∈M for all m ∈ N∗},

and we set ΣM(σ) ⊂ ΣM to be the subfan given by the cones whose rays lie in
{ρm |m ∈ ΓM} ∪ σ(1).

Note that the fan ΣM does not depend on the choice of the integers d1, . . . , dn
defining the pair (X,M).

Remark 5.1.13. If (X,M) is a pair which is quasi-proper with respect to some
Q-divisor class L and the integers d1, . . . , dn are chosen sufficiently large, we have
a((X,M), L) = a((X,M), L) by Proposition 4.2.22.

Remark 5.1.14. For a toric pair (X,M) with a choice of a pair (X,M) as above,
there may be different non-isomorphic choices for the fan ΣM . Nevertheless, for many
pairs, such as pairs corresponding to Campana points, there is only one such choice.
For the purposes of this chapter, the choice of the fan is not important.

Note that ΣM is a complete fan, since Σ is as well. Furthermore, if (X,M) is
proper, then (X,M) = (X,M) so ΣM = ΣM .

We will also define universal torsors of toric pairs. Consider the morphism
f : AΓM

K → An
K given by sending (xm)m∈ΓM

to (y1, . . . , yn) where yi =
∏

m∈ΓM
xmi
m

for all i ∈ {1, . . . , n}.

Definition 5.1.15. We define the universal torsor YM of (X,M) as the open toric
subvariety YM = f−1Y of AΓM

K , where Y → X is the universal torsor of X as defined
in Section 3.1. Let UM = GΓM

m be the dense torus of YM . The restriction of YM → X
to UM → U is a homomorphism of dense tori, and we write TM ⊂ YM for the kernel
of this homomorphism.

We call YM the universal torsor of (X,M), as it plays an analogous role to the
universal torsor of X in Salberger’s work [Sal98].

Remark 5.1.16. By Proposition 5.1.3, the group variety TM is isomorphic to
Hom(Pic(X,M),Gm). Therefore it can be seen as an analogue of the Picard torus of
a toric variety, but it need not be a torus as Pic(X,M) can have torsion. If (X,M)
is a proper pair, then f is surjective, so the natural morphism YM → X is surjective
as well. Furthermore, Proposition 5.1.3 implies that the restriction UM → U is a
TM -torsor.

For toric pairs which are not proper, the morphism YM → X need not be dominant
and the analogy with the universal torsor of a toric variety partially breaks down, as
the following example shows. We still maintain the same terminology however, to
avoid unnecessary case distinctions.
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Example 5.1.17. Let X = P1 and M = {(0, 0)}, i.e., the pair corresponding to
integral points on Gm. Then YM is just a point and the map YM → X is given by
sending the point to (1 : 1).

5.2 M-points of bounded height on toric varieties

5.2.1 Heights

Let X be a smooth proper split toric variety over Q with fan Σ. Any Q-divisor class
L on X naturally induces a height function HL on the torus U ⊂ X, as defined for
divisor classes by Batyrev and Tschinkel in [BT95, Definition 2.1.7]. In this section,
we describe this height using the description of this height given in [PS24b, Section
6.3].

We can represent a Q-divisor class L by a Q-divisor

D = a1D1 + · · ·+ anDn,

for some rational numbers a1, . . . , an ∈ Q. For a maximal cone σ ∈ Σ, write

µD(σ) = a1µD1
(σ) + · · ·+ anµDn

(σ),

where µDi
(σ) ∈ N∨ is the unique character of U such that χ−µDi

(σ) generates O(Di)
on Uσ. Let σ1, . . . , σk be the maximal cones in the fan Σ. For a ray ρ ∈ Σ, we write
nρ for the corresponding ray generator. For i = 1, . . . , n and j = 1, . . . , k we define

l(i)(ej) = ai − ⟨µD(σj), nρi
⟩, (5.2.1)

and

l(i)(s) =

k∑
j=1

l(i)(ej)sj

for s ∈ Ck, where we recall that ⟨·, ·⟩ : N∨
Q ×NQ → Q is the natural pairing.

Note that L(σj) :=
∑n

i=1 l
(i)(ej)Di is Q-linearly equivalent to L by definition. All

coefficients l(i)(ej) are nonnegative when L is nef, as the following proposition shows.

Proposition 5.2.1. Let L be a Q-divisor on X. Then the following holds for any
maximal cone σj ∈ Σ:

1. If ρi ⊂ σj, then l(i)(ej) = 0.

2. If L is nef, then L is semiample and l(i)(ej) ≥ 0 for all i = 1, . . . , n, so L(σj)
is effective.

Proof. The first part follows directly from the definition of l(i)(ej). If L is nef, then
it is semiample by [CLS11, Theorem 6.3.12.], and the nonnegativity of l(i)(ej) ≥ 0 is
proved as in [Sal98, Proposition 8.7(a)].

We will now assume that L is big and nef. As in [PS24b, Section 6], we define the
function

xL(σj) :=

n∏
i=1

x
l(i)(ej)
i ,
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for every j = 1, . . . , k and (x1, . . . , xn) ∈ Y (Q). Now [PS24b, Proposition 6.10]
implies that the height of a point (x1 : . . . : xn) ∈ X(Q) with respect to L, as defined
in [PS24b, Section 6.3], is given as

HL(x) =
∏
v∈ΩQ

max(|xL(σ1)|v, . . . , |xL(σk)|v),

where x = (x1, . . . , xn) ∈ Y (Q). Let Y → X be the universal torsor of X as introduced
in Section 3.1. If we choose the coordinate representatives (x1, . . . , xn) to be integers
representing a Z-integral point on Y, then the formula for the height simplifies to

HL(x) = max(|xL(σ1)|, . . . , |xL(σk)|).

5.2.2 The leading constant

In this section we present Theorem 5.2.5, which will describe the asymptotic behaviour
of the toric counting function

N(X,M),L,S(B) = #{P ∈ (X ,M)(Z[ 1S ]) ∩ U(Q) | HL(P ) ≤ B}

introduced in (1.2.1). To describe the leading constant in the asymptotic, we first
need to describe the α-constant of the pair.

Definition 5.2.2. Let (X,M) be a smooth toric pair, and let L be a big and nef Q-
divisor on X which is toric adjoint rigid with respect to (X,M). Let E be the unique
effective Q-divisor on (X,M) with Q-linear equivalence class a((X,M), L) pr∗M L +
K(X,M), and let (X,M◦) ⊂ (X,M) be the pair such that M◦ \ {0} = ΓM◦ is the set

of m ∈ ΓM such that the associated divisor D̃m is not contained in the support of E.
Let Λ = Eff1(X,M◦) be the effective cone, and let Λ∨ ⊂ Pic(X,M◦)∨R be its dual

cone. Then the α-constant of the pair (X,M) with respect to L is

α((X,M), L) :=
1

# Pic(X,M◦)torsion

∫
Λ∨
e−⟨pr∗M◦ (L),x⟩ dx,

where the integral is taken with respect to the Lebesgue measure on Pic(X,M◦)∨R ,
normalized by the lattice Pic(X,M◦)∨ ⊂ Pic(X,M◦)∨R .

Remark 5.2.3. If (X,M) is the pair corresponding to Campana points for (X,Dm),
then the α-constant α((X,M), L) is equal to the α-constant of (X,Dm) defined in
[PSTVA21, Section 3.3].

Remark 5.2.4. In order to compute the constant in Theorem 5.2.5, we will use a
different description of the α-constant. Let Λ∨

1 ⊂ Λ∨ be the collection of all linear
functions in Pic(X,M◦)∨ which evaluate to 1 at the class L and let (Λ∨)◦ be the inte-
rior of Λ∨. Then R>0×Λ∨

1 → (Λ∨)◦ given by (c, f) 7→ cf is an analytic isomorphism.
We endow Λ∨

1 with the unique measure µ such that the measure on R>0 × E corre-
sponds to the measure on Λ∨ under this isomorphism, where we take the measure on
R>0 to be the standard Lebesgue measure. If we write

αPeyre((X,M), L) =
Volume(Λ∨

1 )

# Pic(X,M◦)torsion
,
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then a general result on cones [BT95, Proposition 2.4.4] implies

α((X,M), L) = a((X,M), L)(b(Q, (X,M), L)− 1)!αPeyre((X,M), L).

This variant of the α-constant is used in Peyre’s and Salberger’s work [Pey95; Sal98]
on Manin’s conjecture as well as in the work of Pieropan and Schindler [PS24a] for
its analogue for Campana points.

Now we can finally describe the leading constant.

Theorem 5.2.5. Let X be a proper split toric variety over Q, let L ∈ Pic(X)Q be a
big and nef Q-divisor class and let S be a positive integer. Let (X,M) be a smooth
toric pair which is quasi-proper with respect to L, and let (X ,M) be its toric integral
model. Then there exists θ > 0 and a polynomial Q of degree b(Q, (X,M), L)−1 such
that

N(X,M),L,S(B) = Ba((X,M),L)(Q(logB) +O(B−θ)),

as B →∞.
Assume that either L is adjoint rigid with respect to (X,M), or S = 1 and L

is toric adjoint rigid with respect to (X,M). Let D = a1D1 + · · · + anDn be the
unique torus-invariant Q-divisor with Q-linear equivalence class a((X,M), L)L such
that pr∗M D +D(X,M) is effective. The leading coefficient of Q is given by

C =
α((X,M), L)

a((X,M), L)(b(Q, (X,M), L)− 1)!
C∞

∏
p prime

Cp,

where
Cp = (1− p−1)#ΓM◦

∑
m∈Mred

p−am

for all prime numbers p not dividing S, and

Cp = (1− p−1)#ΓM◦
∑

m∈Nn
red

p−am

for all prime numbers p dividing S, where am = a1m1 + · · ·+ anmn.
If L is adjoint rigid, then #ΓM◦ = dim(X) + b(Q, (X,M), L) and

C∞ = 2dim(X)
∑

σ∈Σmax

n∏
i=1
ρi⊂σ

1

ai
.

If L is toric adjoint rigid, then

C∞ = 2dim(X)
∑

σ∈Σ
M◦,max

I(σ)C∞(σ),

where ΣM◦,max is the collection of maximal cones in the fan ΣM◦ introduced in No-

tation 5.1.12, I(σ) is the index of the subgroup ⟨[D̃m] | ϕ(m) ̸∈ σ⟩ in Pic(X,M◦(σ))
and

C∞(σ) =
# Pic(X,M◦)torsion

# Pic(X,M◦(σ))torsion
Volume(Zσ) dim(Zσ)!.
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Here Zσ is the polytope consisting of all linear functions

f : V ′′ = ⟨[D̃m] ∈ Pic(X,M◦(σ)) |m ∈ ΓM◦(σ) \ ΓM◦⟩ → R

satisfying f([D̃m]) ≥ 0 for all m ∈ ΓM◦(σ) \ ΓM◦ and f
(∑

m∈ΓM◦(σ)\ΓM◦ [D̃m]
)
≤ 1,

and the volume is computed with respect to the measure ν′′ such that V ′′/Λ′′ has
volume 1, where Λ′′ is the image of Hom(Pic(X,M◦(σ)),Z) in V ′′.

The proof of Theorem 5.2.5 is based on the proofs of Salberger [Sal98] and de la
Bretèche [dlBre01a] for Manin’s conjecture for split toric varieties with the anticanon-
ical height. In Theorem 5.2.10 we will give a geometric interpretation for the leading
coefficient of Q. In particular, this shows that for Campana points the constant agrees
with the prediction in [PSTVA21, §3.3]. We illustrate the theorem by applying it to
a few examples.

Example 5.2.6. In [PSTVA21, Section 3.2.1], the weak Campana points on
(P2, 12D1 + 1

2D2 + 1
2D3) over Z are considered and compared to the Campana points

on the same Campana pair. The set of weak Campana points is

{(x : y : z) | x, y, z ∈ Z \ {0}, gcd(x, y, z) = 1, xyz is squareful} ⊂ P2(Q),

while the set of Campana points is the subset consisting of the points (x : y : z)
such that each integer x, y, z is squareful. In [PSTVA21, Propostition 3.6] it is
proven that the number of weak Campana points with Weil height at most B
and xyz ̸= 0 is at least c1B

3/2 logB as B → ∞, for some constant c1 > 0.
Using Theorem 5.2.5, we can compute a precise asymptotic for the number of
weak Campana points of bounded height. Let (P2

Q,M) be the pair correspond-

ing to the weak Campana points on (P2
Q,

1
2D1 + 1

2D2 + 1
2D3). For the divisor

class L = [D1] ∈ Pic(P2
Q), the proof of Lemma 4.2.16 implies that the pair

(P2
Q,M

◦) as in Definition 5.2.2 is contained in the proper pair (X,M ′) given by
M′ = {(0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}. Since ΓM ′ =
M′ \ {(0, 0, 0)} and

pr∗M ′ [D1] =
1

3
pr∗M ′ [D1 +D2 +D3] =

2

3

∑
m∈ΓM′

[D̃m] = −2

3
K(X,M ′),

the adjoint divisor of L with respect to (X,M) is 0 so we must have
(P2

Q,M
◦) = (P2

Q,M
′). Furthermore, this description of pr∗M ′ [D1] also implies

that a((P2
Q,M), [D1]) = 3

2 and b(Q, (X,M), [D1]) = rank Pic(X,M◦). Since

D1, D2 and D3 are linearly equivalent to each other, the divisor D̃(1,0,1) is lin-

early equivalent to 2D̃(0,2,0) − 2D̃(0,0,2) + D̃(1,1,0) and similarly D̃(0,1,1) is lin-

early equivalent to 2D̃(2,0,0) − 2D̃(0,0,2) + D̃(1,1,0). By Proposition 5.1.3 these
are the only relations between torus-invariant prime divisors on (X,M◦), so
Pic(X,M◦) ∼= Z4 is freely generated by D̃(2,0,0), D̃(0,2,0), D̃(0,0,2) and D̃(1,1,0), and
thus b(Q, (X,M), L) = 4. The effective cone of (P2

Q,M
◦) is generated by the divisors

D̃(2,0,0), D̃(0,2,0), D̃(0,0,2), D̃(1,1,0), D̃(1,0,1), D̃(0,1,1) by Proposition 5.1.2. By subdivid-

ing the dual of the effective cone Eff1(X,M) into two simplicial cones, we compute
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the α-constant using [Bar93, Example 2.1]:

α((P2
Q,M), [D1])

a((P2
Q,M), [D1])(b(Q, (X,M), [D1])− 1)!

=
1

48
.

Since a((P2
Q,M))D1 is linearly equivalent to 1

2 (D1 +D2 +D3), we find C∞ = 4·4·3 =
48.

Finally, for each prime,

Cp =
(
1− p−1

)6( 1− p−3/2(
1− p−1/2

)3 − 3p−1/2

)
.

We conclude that

#

{
(x : y : z) ∈ P2(Q)

∣∣∣∣∣x, y, z ∈ Z \ {0}, gcd(x, y, z) = 1,

xyz is squareful, max(|x|, |y|, |z|) ≤ B

}
=

B3/2(Q(logB) +O(B−θ))

as B → ∞, where θ > 0 is a constant and Q is a cubic polynomial with leading
coefficient ∏

p prime

(
1− p−1

)6( 1− p−3/2(
1− p−1/2

)3 − 3p−1/2

)
≈ 0.862.

Remark 5.2.7. In the previous example, there is a more elementary method to
see that there exists a constant c > 0 such that for any real number B > 2 there
are at least cB3/2(logB)3 tuples (x : y : z) with |x|, |y|, |z| ≤ B and xyz squareful
and nonzero, which we will now give. For every choice of pairwise coprime integers
n1, n2, n3, n4, n5, n6, if we set

(x : y : z) := (n21n5n6 : n22n4n6 : n23n4n5),

then xyz =
∏6

i=1 n
2
i is a squareful number. The probability that 6 positive integers

less than a given bound are pairwise coprime is at least c′ =
∏

p prime(1−
5
p )(1− 1

p )5 > 0.

Thus the number N(B) of points (x : y : z) ∈ P2(Q) with xyz squareful and nonzero
and furthermore max(|x|, |y|, |z|) ≤ B is at least

c′#{(n1, n2, n3, n4, n5, n6) ∈ (N∗)6 | max(n21n5n6, n
2
2n4n6, n

2
3n4n5) ≤ B}.

The integer N(B) is equal to the integral c′
∫
·· ·
∫
x∈A(B)

dx1 . . . dx6, where A(B)

is the set of all (x1, . . . , x6) ∈ [1,∞)6 such
that max(⌊x1⌋2⌊x5⌋⌊x6⌋, ⌊x2⌋2⌊x4⌋⌊x6⌋, ⌊x3⌋2⌊x4⌋⌊x5⌋) ≤ B. By using the trivial
upper bound ⌊xi⌋ ≤ xi for all i ∈ {1, 2, 3, 4, 5, 6} together with the change of variables
yi = log xi, N(B) is at least

c′
∫
· · ·
∫
y∈A′(logB)

ey1+···+y6 dy1 . . . dy6,

where A′(logB) is the set of all (x1, . . . , x6) ∈ [0,∞)6 such that max(2y1+y5+y6, 2y2+
y4 + y6, 2y3 + y4 + y5) ≤ logB. On the domain A′(B) the maximum value attained
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by the integrand is B3/2, which is attained on a three dimensional face F (logB)
of A′(logB). Let n1, . . . ,n3 ∈ A′(logB) be vectors generating the normal space of
F (logB) with respect to the standard inner product on R6. Let F ′(1) be an open of
F (1) ∩ A′(1) which is bounded away from the boundary of A′(1). Then there exists
ϵ > 0 such that V (1) := {y− a1n1 − a2n2 − a3n3 ∈ R6 | y ∈ F ′(1), a1, a2, a3 ∈ [0, ϵ)}
is fully contained in A′(1). Let V (logB) = logBV (1). By the previous lower bound
for N(B), we see that

N(B) ≥ c′
∫
· · ·
∫
y∈V (logB)

ey1+···+y6 dy1 . . . dy6.

The integral over V (logB) is equal to∫∫∫
y∈F ′(logB)

∫∫∫
a1,a2,a3∈[0,ϵ]

B3/2e
∑6

i=1(−a1n1,i−a2n2,i−a3n3,i) da1 da2 da3 dµ,

where µ is the Lebesgue measure on F ′(logB). This is in turn equal to

Volume(F ′(logB))B3/2(1 + o(1)) = Volume(F ′(1))B3/2(logB)3(1 + o(1))

as B →∞, which gives the desired lower bound for N(B).

Using the description of the b-invariant for weak Campana points given in Propo-
sition 4.4.10, we can also determine the asymptotic growth for the number of points
on projective space for which the product of the coordinates is an m-full number,
generalizing Example 5.2.6.

Example 5.2.8. Let m and n be positive integers. Then Theorem 1.2.7 implies that

#

(x1 : · · · : xn) ∈ Pn−1(Q)

∣∣∣∣∣∣∣
x1, . . . , xn ∈ Z \ {0}, gcd(x1, . . . , xn) = 1,
n∏

i=1

xi is m-full, max(|x1|, . . . , |xn|) ≤ B

 =

Bn/m(Q(logB) +O(B−θ))

as B →∞, where θ > 0 is a constant and Q is a polynomial of degree(
m+ n− 1

n− 1

)
−
(
m− 1

n− 1

)
− n.

As we have seen in Section 2.1.4, N(B) is the number of weak Campana points on
the Campana pair

(
Pn−1
Q ,

∑n
i=1

(
1− 1

m

)
Di

)
of height at most B, where the divisors

D1, . . . , Dn are the coordinate hyperplanes. In particular, the log-anticanonical divi-
sor class is given by

∑n
i=1

1
m [Di] and Proposition 4.4.10 implies that the b-invariant

is equal to

−n+ #{(a1, . . . , an) ∈ Nn | a1 + · · ·+ an = m, min(a1, . . . , an) = 0}.

The number of ways to write m as a sum of n (nonzero) integers is
(
m+n−1
n−1

)
(respec-

tively
(
m−1
n−1

)
), which gives the expression for the degree of Q.
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5.2.3 Geometric interpretation of the constant

Before giving the proof of Theorem 5.2.5, we give a geometric interpretation for the
leading constant obtained in the theorem in the case where L is adjoint rigid with
respect to (X,M), by interpreting the constant as an adelic integral. In particular we
will show that the constant agrees with the prediction in [PSTVA21, §3.3]. We define
the Tamagawa constant by

τ(Q, S, (X,M), L) :=

∫
x∈(X ,M)(AZ[1/S])

1

Ha((X,M),L)L+KX
(x)

dτ(X,M◦),

where Ha((X,M),L)L+KX
is the toric height corresponding to the Q-divisor class

a((X,M), L)L + KX , as defined in [BT95, Definition 2.1.7]. The measure τ(X,M◦)

is defined to be τX,∞ ×
∏

p prime(1 − p−1)b(Q,(X,M),L)τX,p, where the measures τX,∞
and τX,p are the local measures on X(R) and X(Qp) as in [CT10, §2.1.8] induced
by the toric metric on the canonical divisor class KX as in [BT95, Theorem 2.1.6].
Equivalently, we can write

τ(Q, S, (X,M), L) =

∫
x∈X(AQ)

δM,S(x)

Ha((X,M),L)L+KX
(x)

dτ(X,M◦),

where δM,S =
∏

p prime
p∤S

δM,p is the product of the indicator functions δM,p of the set

of M-points in X (Zp) for each prime p not dividing S.

Remark 5.2.9. The factors (1 − p−1)b((X,M),L) can be interpreted as an analogue
of the convergence factors considered in [CT10, Theorem 1.1]. Indeed, if we view
Pic(X,M◦) as a Gal(Q/Q)-module by letting the Galois group act trivially on it,
then the corresponding Artin L-function is simply

L(s,Pic(X,M◦)/{torsion}) = ζ(s)b((X,M),L) =
∏

p prime

(1− p−s)−b((X,M),L).

Theorem 5.2.10. In the setting of Theorem 5.2.5, assume that L is adjoint rigid
with respect to (X,M). Then the leading coefficient of Q is given by

C =
α((X,M), L)

a((X,M), L)(b(Q, (X,M), L)− 1)!
τ(Q, S, (X,M), L).

In particular, if (X,M) is a pair corresponding to Campana points, then the constant
is compatible with the prediction in [PSTVA21, §3.3].

Proof. We will prove the theorem by computing the the Tamagawa constant as a
product over all places over Q, which will show that it agrees with the product
C∞

∏
p prime Cp in Theorem 5.2.5. The Q-divisor class a((X,M), L)L + KX on X

is represented by the Q-divisor class a((X,M), L)D+DX , where D is as in Theorem
5.2.5 and DX = −

∑n
i=1Di. The Tamagawa constant is equal to the product

τ(Q, S, (X,M), L) =

∫
X(R)

1

Ha((X,M),L)D+DX ,∞(x)
dτX,∞

×
∏

p prime

∫
X(Qp)

(1− p−1)b(Q,(X,M),L)δM,p(x)

Ha((X,M),L)D+DX ,p(x)
dτX,p,
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where Ha((X,M),L)L+KX
=
∏

v∈ΩQ
Ha((X,M),L)D+DX ,v as in [BT95, Definition 2.1.5]

and where we set δM,p = 1 if p divides S. We will first start with the archimedean
place ∞.

For a maximal cone σ ∈ Σ, let Cσ(R) ⊂ X(R) be the subset as defined in [Sal98,
Notation 9.1]. As shown in the proof of [Sal98, Lemma 9.10], Cσ(R) is the set of all
(x1 : · · · : xn) ∈ X(R) such that |x1|, . . . , |xn| ≤ 1 and xi = 1 for all i ∈ {1, . . . , n} with
ρi ̸⊂ σ. In particular we can identify Cσ(R) with [0, 1]d. Under this identification,
the measure τX,∞ corresponds to the Lebesgue measure on [0, 1]d as shown in the
proof of [Sal98, Proposition 9.16]. By construction, we have X(R) =

⋃
σ∈Σmax

Cσ(R)
and the proof of [Sal98, Proposition 9.16] implies that Cσ(R) ∩ Cσ′(R) for any two
maximal cones σ ̸= σ′. Finally, for P = (x1 : · · · : xn) ∈ Cσ(R), the height is simply
given Ha((X,M),L)D+DX ,∞(P ) =

∏n
i=1
ρi⊂σ

x1−ai
i . Thus we obtain∫

x∈X(R)

1

Ha((X,M),L)D+DX ,∞(x)
dτX = 2dim(X)

∑
σ∈Σmax

n∏
i=1
ρi⊂σ

∫ 1

0

xai−1
i dxi = C∞.

Let p be a prime. By [Sal98, Proposition 9.14], the measure τX,p restricts to the
Haar measure on Ad(Zp) = Zd

p for all toric subschemes Ad ⊂ X . In particular it
follows that for all m ∈Mred, the set

Vm = {x ∈ X(Qp) | multp(x) = m}

has volume equal to (1 − p−1)dim(X)p−
∑n

i=1 mi . Additionally, the function
Ha((X,M),L)D+DX ,p is constant on Vm, where it takes the value pam−

∑n
i=1 mi . This

implies∫
X(Qp)

(1− p−1)b(Q,(X,M),L)δM,p(x)

Ha((X,M),L)D+DX ,p(x)
dτX,p =

(1− p−1)dim(X)+b(Q,(X,M),L)
∑

m∈Mred

p−am

if p does not divide S, and∫
X(Qp)

(1− p−1)b(Q,(X,M),L)

Ha((X,M),L)D+DX ,p(x)
dτX,p = (1− p−1)dim(X)+b(Q,(X,M),L)

∑
m∈Nn

red

p−am

if p divides S. In either case, this agrees with the factor Cp from Theorem 5.2.5. Thus
we obtain

τ(Q, S, (X,M), L) = C∞
∏

p prime

Cp,

proving the desired identity.
The compatibility with the conjecture in [PSTVA21] follows from this identity

together with the straightforward identity

dτU ′,Dm

Ha((X,M),L)L+KX+Dm

=
dτU ′

Ha((X,M),L)L+KX

,

where U ′ is the complement of the support of a((X,M), L)L+KX +Dm, τU ′ is the
Tamagawa measure as in [CT10, Definition 2.8] and τU ′,Dm = τU′

HDm
.
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5.2.4 Part 1 of the proof of Theorem 5.2.5: upper bounds

This section is devoted to proving the following weak form of Theorem 5.2.5.

Lemma 5.2.11. Let (X,M) be a smooth toric pair over Q which is quasi-proper with
respect to a big and nef Q-divisor class L on X. Then there exists a constant θ > 0
and a polynomial Q of degree at most b(Q, (X,M), L)− 1 such that

N(X,M),L,S(B) = Ba((X,M),L)(Q(logB) +O(B−θ)).

The proof of this lemma is based on the following Tauberian theorem by de la
Bretèche.

Theorem 5.2.12. [dlBre01b, Théorème 1] Let f : Nk → R be a nonnegative arith-
metic function and let F be the associated Dirichlet series

F (s) =

∞∑
r1=1

· · ·
∞∑

rk=1

f(r1, . . . , rk)

rs11 . . . rskk
.

Suppose there exists α ∈ Rk
>0 such that F satisfies the following three properties:

(P1) For all s with Re(s) > α, the series F (s) converges absolutely.

(P2) There exist finite collections L = {l1, . . . , lñ} and R of linear forms with non-
negative coefficients such that the function H defined by

H(s) = F (s + α)

ñ∏
i=1

li(s)

can be analytically continued to a holomorphic function defined on

D(δ1) = {s ∈ Ck | Re(l(s)) > −δ1,∀l ∈ L ∪R},

for some positive constant δ1.

(P3) There exists δ2 > 0 such that for all ϵ > 0, ϵ′ > 0, the upper bound

|H(s)| ≪ (1 + ∥Im (s)∥ϵ1)

ñ∏
i=1

(1 + |Im (li(s))|)1−δ2 min{0,Re(li(s))}

is uniform in the domain D(δ1 − ϵ′) ∩ {s ∈ Ck|Re(s) < (1, . . . , 1)}.

Then there exists a polynomial Q of degree at most ñ− rank(l1, . . . , lñ) such that

S(B) =

B∑
r1=1

· · ·
B∑

rk=1

f(r1, . . . , rk) = B
∑k

i=1 αi(Q(logB) +O(B−θ))

for all B ≥ 1, where θ > 0 is a constant depending on α, δ1, δ2,L ,R.

Remark 5.2.13. Theorem 5.2.12 has a typo in its original formulation [dlBre01b,
Théorème 1], as it requires the the upper bound in (P3) to be satisfied on the whole
of D(δ1 − ϵ′). This is a stronger assumption than necessary and desired, as it would
imply that H is bounded on Rk

>0, which would exclude the original application of the
theorem in [dlBre01a].
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Dirichlet series

Since the height function satisfies HtL(x) = HL(x)t for any t ∈ Q>0, we assume
without loss of generality that L ∈ Pic(X). As L is integral, the function xL(σj) is
simply a monomial, and thus takes integer values on integer inputs.

For (r1, . . . , rk) ∈ Nk, we define f(r1, . . . , rk) to be

#

{
d ∈ (N∗)n

∣∣∣∣∣dL(σj) = rj for all j = 1, . . . , k; gcd(dσ̂1 , . . . ,dσ̂k) = 1;

multp(d) ∈M for all prime numbers p ∤ S

}
,

where multp(d) = (vp(x1), . . . , vp(xn)) is the tuple given by the p-adic valuations of
the components of d, and the monomials

xσ̂ =

n∏
i=1
ρi ̸⊂σ

xi

are defined as in Section 3.1.
In this notation, N(X,M),L,S(B) = 2dim(X)S(B), where

S(B) :=

B∑
r1=1

· · ·
B∑

rk=1

f(r1, . . . , rk).

Here the factor of 2dim(X) accounts for the fact that f only counts the points that can
be described using positive coordinates. We estimate the sum S(B) by considering
the multiple Dirichlet series

F (s) :=

∞∑
r1=1

· · ·
∞∑

rk=1

f(r1, . . . rk)

rs11 . . . rskk
.

In order to apply Theorem 5.2.12, we will rewrite F as a multiple Dirichlet series
of a multiplicative function. Let χ : (N∗)n → {0, 1} be the characteristic function of
the set

{d ∈ (N∗)n | gcd(dσ̂1 , . . . ,dσ̂k) = 1,multp(d) ∈M for all primes p ∤ S},

so
f(r1, . . . rk)

rs11 . . . rskk
=

∑
d∈Nn

dL(σj)=rj ∀j∈{1,...,k}

χ(d)

d
l(1)(s)
1 . . . d

l(n)(s)
n

.

This equality implies

F (s) =

∞∑
d1=1

· · ·
∞∑

dn=1

χ(d)

d
l(1)(s)
1 . . . dl

(n)(s)
n

.

Since the condition gcd(dσ̂1 , . . . ,dσ̂k) = 1 only depends on the valuations multp(d)
at each prime, the function χ is multiplicative in the sense that

χ(dd′) = χ(d)χ(d′)
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for all d,d′ ∈ (N∗)n satisfying gcd(d1 . . . dn, d
′
1 . . . d

′
n) = 1.

Since χ is multiplicative, we can write

F (s) =
∏

p prime

Fp(s),

where for primes numbers p not dividing S,

Fp(s) =

∞∑
m1=1

· · ·
∞∑

mn=1

χ(pm1 , . . . , pmn)

plm(s)
=

∑
m∈Mred

p−lm(s),

and similarly for prime numbers p dividing S,

Fp(s) =
∑

m∈Nn
red

p−lm(s).

Here we write lm = m1l
(1) + · · ·+mnl

(n) for m ∈ Nn. Note that for all i ∈ {1, . . . , n}
and s ∈ Qk, the value l(i)(s) is the coefficient of Di in

∑k
j=1 sjL(σj). This can be

seen as a direct consequence of the definition of the linear forms l(1), . . . , l(n) as given
in (5.2.1). For m ∈ ΓM , this gives a simple geometric interpretation for the linear

form lm: for s ∈ Qk, the value lm(s) is the coefficient of D̃m in pr∗M
∑k

j=1 sjL(σj).
Using the product formula F (s) =

∏
p prime Fp(s), we determine an open set on

which F (s) converges.

Proposition 5.2.14. The series Fp(s) converges absolutely in the region

V = {s ∈ Ck | Re(l(i)(s)) > 0 for all i = 1, . . . , n}.

Furthermore, for any ϵ > 0 and any prime number p ̸∈ S,

Fp(s) = 1 +O(p−1−ϵ)

in the region V ∩{s ∈ Ck | Re(lm(s)) > 1 + ϵ for all m ∈M \ {0}}. Here the implicit
constant depends on ϵ but not on p.

Consequently, the series F (s) converges in the region

V ∩ {s ∈ Ck | Re(lm(s)) > 1 for all m ∈M \ {0}}.

Proof. The series ∑
m∈Nn

p−Re(lm(s)) =

n∏
i=1

∞∑
mi=1

(
p−Re(l(i)(s))

)mi

converges to
∏n

i=1

(
1− p−Re(l(i)(s))

)−1

for all s ∈ V , as it is simply a product of

convergent geometric series. By comparing Fp(s) with this series we directly obtain
the absolute convergence of Fp(s) for s ∈ V . Let m1, . . . ,mt be the minimal nonzero
elements in M. Every nonzero element m ∈M can be written as mi + m′ for some
i ∈ {1, . . . , t} and m′ ∈ Nn, so |Fp(s)− 1| is dominated by the series(

p−Re(lm1
(s)) + · · ·+ p−Re(lmt (s))

) ∑
m∈Nn

p−Re(lm(s)).
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As
∑

m∈Nn p−Re(lm(s)) is bounded on V ∩ {s ∈ Ck | Re(lm(s)) > 1 for all m ∈
M \ {0}}, Fp(s) satisfies the estimate Fp(s) = 1 + O(p−1−ϵ) on this region. In turn,
the estimate for p ̸∈ S implies that the product F (s) =

∏
p prime Fp(s) converges

whenever s lies in

V ∩ {s ∈ Ck | Re(lm(s)) > 1 for all m ∈M \ {0}}.

By Proposition 5.2.14, if a tuple α ∈ Rk
≥0 satisfies Re(lm(α)) ≥ 1 for all m ∈M \

{0}} as well as Re(l(i)(α)) > 0 for all i = 1, . . . , n, then condition (P1) from Theorem
5.2.12 will be satisfied. However, in order to find a good bound for N(X,M),L,S(B)

using Theorem 5.2.12, we need to minimize the sum
∑k

j=1 αj .

Choice of α

Let PM be the following linear program: minimize the function
∑k

j=1 αj , under
the conditions αj ≥ 0 for all j = 1, . . . , k and lm(α) ≥ 1 for all m ∈ M. Since
lm = m1l

(1) + · · ·+mnl
(n), the latter condition is equivalent to the condition

k∑
j=1

αj pr∗M L(σj) +D(X,M) ≥ 0.

This condition in turn implies that (
∑k

j=1 αj) pr∗M L+K(X,M) ∈ Eff1(X,M), so any

solution α to PM has to satisfy
∑k

j=1 αj ≥ a((X,M), L).

We will use the following proposition to show that the equality
∑k

j=1 αj =
a((X,M), L) can be achieved.

Proposition 5.2.15. Let D = a1D1 + · · · + anDn be a torus-invariant Q-divisor
representing L ∈ Pic(X)Q. Then

∑
σ∈Σmax

∏
ρi ̸∈σ

ai

µD(σ) = 0,

where we recall the notation µD = a1µD1
+ · · ·+ anµDn

. Thus

∑
σ∈Σmax

L(σ)
∏
ρi ̸∈σ

ai =

 ∑
σ∈Σmax

∏
ρi ̸∈σ

ai

D.

Proof. Let σ ∈ Σ be a maximal cone in the fan of X, and order the rays such that
ρ1, . . . ρd are the rays in σ, where d = dimX. Then nρ1

, . . . , nρd
forms a lattice basis

of N , since X is smooth. Denote the corresponding dual basis by n∗ρ1
, . . . , n∗

ρd
∈ N∨.

Then we see by definition that

µD(σ) =

d∑
i=1

ain
∗
ρi
.
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Recall that a linear form N → Z is irreducible if it is not a positive multiple of another
linear form. For τ a facet of σ, we write uσ,τ ∈ N∨ for the unique irreducible linear
form which is zero on τ and positive on σ \ τ . This linear form is simply given as
uσ,τ = n∗ρi

, where ρi is the unique ray in σ(1)\τ(1). We also write aσ,τ = ai. By [Sal98,
Lemma 8.9(i)] there is a unique maximal cone σ′ ̸= σ containing τ , which satisfies
τ = σ′ ∩ σ. Since uσ′,τ is also irreducible and zero on τ , we see uσ′,τ = ±n∗ρi

. Since
there are n1 ∈ σ \ τ , n2 ∈ σ′ \ τ such that n1 + n2 ∈ τ , we see uσ′,τ = −n∗ρi

= −uσ,τ .
Therefore, we get

∑
σ∈Σmax

 n∏
i=1
ρi ̸∈σ

ai

µD(σ) =
∑

σ∈Σmax

 n∏
i=1
ρi ̸∈σ

ai

 ∑
τ facet of σ

aσ,τuσ,τ

=
∑

τ facet of Σ

∑
σ∈Σmax
τ⊂σ

∏
i=1
ρi ̸∈σ

ai

uσ,τ = 0.

Corollary 5.2.16. The Q-divisor class a((X,M), L)L can be represented by a Q-
divisor D = a1D1 + · · · + anDn on X such that a1, . . . , an > 0 and such that
a((X,M), L) pr∗M D + D(X,M) is effective. Furthermore, for any such D, there ex-

ists a vector α ∈ Rk
>0 such that D =

∑k
j=1 αjL(σj) and

∑k
j=1 αj = a((X,M), L).

Proof. Let (X,M) be a proper pair as in Definition 4.2.21. Let D = a1D1+· · ·+anDn

be a Q-divisor such that a((X,M), L) pr∗
M
D + D(X,M) is an effective Q-divisor. As

(X,M) is proper, this implies a1, . . . , an > 0 as D(X,M) = −
∑

m∈ΓM
D̃m is a divisor

representing the canonical class K(X,M). Since a((X,M), L) = a((X,M), L), the

divisor a((X,M), L) pr∗M D+D(X,M) is simply the restriction of a((X,M), L) pr∗
M
D+

D(X,M) to Div(X,M)Q. Now Proposition 5.2.15 implies that if we take

βj =

∏
ρi ̸∈σj

ai∑
σ∈Σmax

∏
ρi ̸∈σ ai

,

then D =
∑k

j=1 βjL(σj).
By setting α := a((X,M), L)β, we find that

k∑
j=1

αj pr∗M L(σj) +D(X,M) = a((X,M), L) pr∗M D +D(X,M)

is effective,
∑k

j=1 αj = a((X,M), L) and αj > 0 for all j = 1, . . . , k.

Choice of linear forms

In this section we will choose the set L of linear forms, and we verify that conditions
(P2) and (P3) in Theorem 5.2.12 are satisfied with this choice.

Assumption 5.2.17. Without loss of generality, we assume that we have cho-
sen the representative D = a1D1 + · · · + anDn of L such that the Q-divisor
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a((X,M), L) pr∗M D + D(X,M) =
∑

m∈ΓM
ãmD̃m is effective and has maximal sup-

port: we assume ãm > 0 for as many m ∈ ΓM as possible for such a representative of
L.

Let (X,M◦) ⊂ (X,M) be the toric pair as in Definition 5.2.2 and let α be as in
Corollary 5.2.16. For m ∈ ΓM , the coefficient of D̃m in a((X,M), L) pr∗M D+D(X,M)

is given by lm(α) − 1. Thus, by Assumption 5.2.17, m ∈ ΓM lies in M◦ if and only
if lm(α) = 1. Let

L = {lm |m ∈ ΓM◦} and R = {l(1), . . . , l(n)}.

Since ai > 0 for all i = 1, . . . , n, l(i)(α) = ai

a((X,M),L) > 0. Furthermore, if m,m′ ∈
Nn satisfy m <m′ using the natural partial order on Nn, then Re(lm(s)) < Re(lm′(s))
for all s ∈ Ck satisfying Re(l(i)(s)) > 0. As Mred,mon \M◦ has a finite number of
minimal elements in this ordering on Nn, the continuity of the linear forms lm and
l(i) implies that there exist 1

4 > δ1 > 0, ϵ > 0 such that for all

s ∈ D(δ1) = {s ∈ Ck | Re(l(s)) > −δ1 ∀l ∈ L ∪R},

we have that Re(lm(α+s)) > 1+ϵ for all m ∈Mred,mon \M◦ and Re(l(i)(α+s)) > ϵ.
Consider the function

H(s) = F (s + α)
∏

m∈ΓM◦

lm(s),

and write
F (s)∏

m∈ΓM◦ ζ(lm(s))
=

∏
p prime

Gp(s),

where

Gp(s) =

( ∑
m∈Mred

p−lm(s)

) ∏
m∈ΓM◦

(1− p−lm(s))

for all prime numbers p not dividing S.
The product ( ∑

m∈M◦

p−lm(s)

) ∏
m∈ΓM◦

(1− p−lm(s))

is a finite sum of the form 1 +
∑

m∈I cmp
−lm(s), where I ⊂ Mred,mon is a fi-

nite set disjoint from ΓM◦ . In particular we see that the absolute value of(∑
m∈M◦ p−lm(α+s)

)∏
m∈ΓM◦ (1 − p−lm(α+s)) − 1 is bounded by #I · p−1−ϵ for all

s ∈ D(δ1). By writing

Gp(s) =

 ∑
m∈M◦

p−lm(s) +
∑

m∈Mred\M◦

p−lm(s)

 ∏
m∈ΓM◦

(1− p−lm(s)),

we find that the function Gp(s) satisfies Gp(s + α) = 1 +O(p−1−ϵ) for all s ∈ D(δ1)
and for all prime numbers p not dividing S, where the implied constant depends on δ1
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but is independent of the prime p. Thus the product G(s) =
∏

p primeGp(s) converges
to a bounded holomorphic function on α + D(δ1). Since sζ(s + 1) is a holomorphic
function, this implies that H(s) can be analytically continued to a function on D(δ1)
and therefore condition (P2) of Theorem 5.2.12 is satisfied.

Now, as in de la Bretèche’s work [dlBre01a, §4.3], we will use the upper bound

zζ(z + 1)≪ (Im z + 1)1−min(Re z,0)/3+ϵ, T ≥ Re(z) ≥ − 1
2 ,

valid for all ϵ > 0 and T > 0, which follows from [Ten15, Theorem II.3.8]. By
shrinking δ1 if necessary, we can assume that G extends to a holomorphic function on
the topological closure of α + D(δ1). Now since G(s) is bounded on α + D(δ1), this
implies that condition (P3) in Theorem 5.2.12 is satisfied with δ2 = 1/3.

Thus all conditions of Theorem 5.2.12 are satisfied with the choices made above
for α, δ1, δ2,L and R.

Determining the rank

To finish the proof of Lemma 5.2.11, we need to determine the rank of L . We will first
compute the rank of the matrix given by the linear forms l(1), . . . , l(n). For vectors
l1, . . . , ln ∈ Rk, we write (l1, . . . , ln) for the matrix with rows l1, . . . , ln.

Proposition 5.2.18. If L is a big and nef Q-divisor class, then the rank of the
matrix (l(1), . . . , l(n)) is dim(X) + 1. Consequently, any Q-divisor in Div(X)Q that is
Q-linearly equivalent to 0 lies in

V =

〈
k∑

j=1

yj pr∗M L(σj)

∣∣∣∣∣∣ (y1, . . . , yk) ∈ Qk,

k∑
j=1

yj = 0

〉
.

Proof. Without loss of generality we can assume that L is a divisor class, rather than
just a Q-divisor class. We represent L by the divisor D′ := L(σ1) = a′1D1+· · ·+a′nDn.
Then we have µD′(σ1) = 0, so the first column of the matrix (l(1), . . . , l(n)) is just
(a′1, . . . , a

′
n). Since L is a nonzero divisor class, the divisor L(σ1) does not lie in the

linear span of the divisors L(σ1)− L(σ2), . . . , L(σ1)− L(σk). Therefore

rank(l(1), . . . , l(n)) = rank(A) + 1,

where A is the matrix such that the coefficient in position (i, j) is ⟨µD′(σj), nρi
⟩. Since

a nef divisor on a toric variety is globally generated by [CLS11, Theorem 6.3.12], we
see by [CLS11, Theorem 6.1.7] that rank(A) = dimPL, where PL is the polyhe-
dron associated to L as defined in [CLS11, §4.3]. By [CLS11, Lemma 9.3.9] we also
have dimPL = dim(X), as L is big. The vector space V is contained in the kernel
of DivT (X)Q → Pic(X)Q. By [CLS11, Theorem 4.2.1.] this kernel has dimension
dim(X), but rank(l(1), . . . , l(n)) = dim(X) + 1 implies V has dimension dim(X) as
well, so V is equal to the kernel.

We view L as a linear map Qk → QΓM◦ , so that #ΓM◦−rank(L ) = rank coker L .

Proposition 5.2.19. The rank of coker L is equal to b(Q, (X,M), L)− 1.
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Proof. The cokernel of L is the dual space of the kernel of the dual map L ∨ : QΓM◦ →
Qk. This kernel isx ∈ QΓM◦

∣∣∣∣∣∣
∑

m∈ΓM◦

lm(ej)xm = 0 for all j ∈ {1, . . . , k}

 .

Recall that, for all j ∈ {1, . . . , k}, L(σj) =
∑n

i=1 l
(i)(ej)Di by the defining formula

(5.2.1) for l(i)(ej), so pr∗M◦ L(σj) =
∑

m∈ΓM◦ lm(ej)D̃m. This implies that the kernel
is isomorphic to

{x ∈ Div(X,M◦)∨Q | x(pr∗M◦ L(σj)) = 0∀j ∈ {1, . . . , k}}.

Every such function is zero on torus-invariant principal divisors, as Proposition 5.2.18
implies that these are the divisors of the form

∑k
j=1 yj pr∗M L(σj) for (y1, . . . , yk) ∈ Qk

satisfying
∑k

j=1 yj = 0. This implies that the kernel is naturally identified with

{x ∈ Pic(X,M◦)∨Q | x(pr∗M◦ L) = 0}.

As (X,M◦) is quasi-proper with respect to L as (X,M) is quasi-proper, pr∗M◦ L is
not Q-linearly equivalent to zero, so rank coker L = rank Pic(X,M◦)− 1.

The class of a torus-invariant prime divisor D̃m ∈ Div(X,M) is contained in
the minimal face of Eff1(X,M) containing a((X,M), L) pr∗M L+K(X,M) if and only
if m ∈ ΓM \ ΓM◦ , by construction of the pair (X,M◦). Since the effective cone
Eff1(X,M) is generated by torus-invariant divisors by Proposition 5.1.2, this implies
that b(Q, (X,M), L) = rank Pic(X,M◦) finishing the proof.

Proof of Lemma 5.2.11. Theorem 5.2.12 implies that

N(X,M),L,S(B) = Ba((X,M),L)(Q(logB) +O(B−θ)),

where Q is a polynomial has degree at most b(Q, (X,M), L) − 1 and θ > 0. This
finishes the proof of the lemma.

5.2.5 Part 2 of the proof of Theorem 5.2.5: computing the
leading constant

Now we will show that the polynomial Q has the expected degree for any big and nef
Q-divisor L. We will furthermore compute the leading constant under the assumption
that the Q-divisor L is toric adjoint rigid with respect to (X,M).

We first notice that it suffices to prove Theorem 5.2.5 for adjoint rigid and toric
adjoint rigid Q-divisors L satisfying a((X,M), L) = 1.

Proposition 5.2.20. To show that the polynomial Q obtained in Lemma 5.2.11 has
degree b(Q, (X,M), L)− 1, it suffices to assume that a((X,M), L) = 1, S = 1 and L
is toric adjoint rigid with respect to (X,M).

Proof. We can assume without loss of generality that a((X,M), L) = 1 since the
height function satisfiesHtL(x) = HL(x)t for any t ∈ Q>0, and thusN(X,M),tL,S(B) =
N(X,M),L,S(Bt). The pair (X,M◦) is a pair that is quasi-proper with respect to L,
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and L is toric adjoint rigid with respect to (X,M◦). Furthermore a((X,M), L) =
a((X,M◦), L) and b(Q, (X,M), L) = b(Q, (X,M◦), L) = rank Pic(X,M◦) as in
the proof of Proposition 5.2.19. By Lemma 5.2.11, we know that NM,L,S(B) =
Ba((X,M),L)(Q(logB) + O(B−θ)) as B → ∞ for some θ > 0 and some polynomial Q
of degree at most b(Q, (X,M), L)− 1. Note that furthermore

N(X,M),L,S(B) ≥ N(X,M◦),L,1(B).

If we assume that Theorem 5.2.5 is true if a((X,M), L) = 1, S = 1 and L is toric
adjoint rigid with respect to (X,M), then this implies

N(X,M◦),L,1(B) = Ba((X,M),L)(Q′(logB) +O(B−θ)),

for some polynomial Q′ of degree b(Q, (X,M), L)− 1. Now the basic inequality

N(X,M),L,S(B) ≥ N(X,M◦),L,1(B)

implies that the degree of Q is at least the degree of Q′, and thus Q has degree
b((X,M), L)− 1 as well.

Assumption 5.2.21. Henceforth we assume that L is adjoint rigid with respect to
(X,M), or that it is toric adjoint rigid with respect to (X,M) and S = 1, and in
these cases we will compute the leading coefficient of the polynomial Q.

Assumption 5.2.22. The constant C∞ in Theorem 5.2.5 does not depend on
the choice of the integers d1, . . . , dn determining the pair (X,M◦) as in Notation
5.1.12. Therefore, we will assume that the integers are chosen large enough to en-
sure a(Q, (X,M), L) = a(Q, (X,M◦), L). Note that such integers exist as (X,M◦) is
quasi-proper with respect to L.

We will prove Theorem 5.2.5 using another theorem of de la Bretèche.

Theorem 5.2.23. [dlBre01b, Théorème 2(ii), Remarques (ii)] In the setting of The-
orem 5.2.12, assume that the following additional conditions are satisfied:

(C1) There exists a function H̃ such that H(s) = H̃(l1(s), . . . , lñ(s));

(C2) the vector (1, . . . , 1) ∈ Rk is a strictly positive linear combination of l1, . . . , lñ;

(C3) l1(α) = · · · = lñ(α) = 1.

Then the polynomial Q satisfies the relation

Q(logB) = C0B
−

∑k
j=1 αjVolume(D(B)) +O(log(B)ρ−1),

as B →∞. Here ρ := ñ− rank(l1, . . . , lñ), C0 := H(0, . . . , 0) and

D(B) =

{
y ∈ [1,∞)ñ

∣∣∣∣∣
ñ∏

i=1

y
li(ej)
i ≤ B ∀j = 1, . . . , k

}
.

We will apply this theorem for the same series as in the proof of Lemma 5.2.11.
We thus only need to verify conditions (C1), (C2) and (C3) and then estimate the
volume and show that H(0, . . . , 0) ̸= 0. Due to the way we chose L , condition (C3)
is trivially satisfied. We first show that condition (C2) is satisfied.
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Proposition 5.2.24. If (X,M) is a smooth toric pair such that 0 ∈ Pic(X,M) is
a toric rigid divisor, then the monoid N+

M ⊂ N introduced in Definition 3.2.2 is a
lattice.

Proof. We argue by contradiction, and assume that N+
M is not a lattice. Then the

cone generated by N+
M is not a vector space, and thus there exists a linear form

f : NR → R such that the half-space H = {n ∈ NR | f(n) ≥ 0} contains N+
M but not

−N+
M . Since (X,M) is smooth, N+

M is finitely generated, so the linear form f can be
chosen such that it restricts to a homomorphism N → Z, i.e. to an element in N∨.
Using the description of Pic(X,M) given in Proposition 5.1.3, this implies that the
divisor

∑
m∈ΓM

f(ϕ(m))D̃m is linearly equivalent to 0. By construction f(ϕ(m)) ≥ 0
for all m ∈ ΓM and f(ϕ(m)) ̸= 0 for some m ∈ ΓM , so this is a nontrivial torus-
invariant effective divisor. This is in contradiction with the fact that 0 is toric adjoint
rigid with respect to (X,M).

Using the above proposition and the fact that L is toric adjoint rigid with respect to
(X,M), there exist coefficients cm > 0 corresponding to the generators m ∈ ΓM◦ such
that

∑
m∈ΓM◦ cmϕ(m) = 0, where ϕ : Nn → N is the homomorphism in Definition

3.2.2. Therefore the sum∑
m∈ΓM◦

lm(ej)cm =
∑

m∈ΓM◦

(am − ⟨µL(σj), ϕ(m)⟩)cm =
∑

m∈ΓM◦

cm

n∑
i=1

aimi > 0

does not depend on j, and thus

∑
m∈ΓM◦

lmcm =
∑

m∈ΓM◦

cm

n∑
i=1

aimi · (1, . . . , 1),

so B = (1, . . . , 1) is a positive linear combination of the linear forms in L , and hence
condition (C2) of Theorem 5.2.23 is satisfied. Finally, condition (C1) will follow from
the following proposition.

Proposition 5.2.25. The Q-divisor L is adjoint rigid with respect to (X,M) if and
only if for every i = 1, . . . , n the linear form l(i) lies in the linear span of L . Similarly,
the divisor L is toric adjoint rigid with respect to (X,M) if and only if for every
m ∈M the linear form lm lies in the linear span of L .

Proof. We give the proof for the toric adjoint rigid case, and we note that the adjoint
rigid case is proved analogously. By Corollary 5.2.16, any representative D = a1D1 +
· · ·+anDn of a((X,M), L)L with a1, . . . , an > 0 can be written as D =

∑k
j=1 αjL(σj)

with α1, . . . , αk > 0, for some solution α of the linear program PM . From this we
obtain the expression

pr∗M D +D(X,M) =
∑

m∈ΓM

(lm(α)− 1)D̃m,

which implies that L is toric adjoint rigid with respect to (X,M) if and only if for
every m ∈ M the value lm(α) does not depend on the choice of a solution α to the
linear program PM .
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If the linear form lm lies in the linear span of L for every m ∈ M, then the the
values of the linear forms in L evaluated at α determine the value of lm(α) for all
m ∈M. Since for every l ∈ L we have l(α) = 1 by definition, we therefore see that
L is toric adjoint rigid.

Conversely, assume that lm′ is a linear form not in the span of L for some m′ ∈
M. Then there exists β ∈ Rk such that lm′(β) = 1 but l(β) = 0 for all l ∈ L .
Let D be a representative of L satisfying Assumption 5.2.17, and take α such that
D =

∑k
j=1 αjL(σj) and αj > 0 for all j = 1, . . . , k. For every m ∈ ΓM such that

lm ̸∈ L we have lm(α) > 1, by construction of L . Therefore, there exists ϵ > 0 such
that lm(α+ ϵβ) ≥ 1 for all m ∈M and α+ ϵβ > 0. This implies that α+ ϵβ ∈ Rk

>0

is also a solution to PM . Since lm′(α+ ϵβ) ̸= lm′(α), this implies that L is not toric
adjoint rigid.

Note that F (s) is always a function of the linear forms l(1)(s), . . . , l(n)(s). Further-
more if S = 1, then F (s) is a function of the linear forms lm(s) for m ∈ ΓM . Hence
condition (C1) is satisfied by Proposition 5.2.25, since either L is adjoint rigid or L
is toric adjoint rigid and S = 1. Thus we can apply Theorem 5.2.23 to determine the
leading constant. By this theorem, the polynomial Q giving the asymptotic satisfies

Q(logB) = 2dimXC0I(B)/Ba((X,M),L) +O((logB)b(Q,(X,M),L)−2),

where

C0 = H(0, . . . , 0)

and I(B) is the volume of the domain

D(B) =

x ∈ [1,∞)ΓM◦

∣∣∣∣∣∣
∏

m∈ΓM◦

x
lm(ej)
m ≤ B, ∀j = 1, . . . , k

 .

Thus to prove Theorem 5.2.5, it remains to compute C0 and estimate I(B) as B →∞.
First we will compute C0.

Proposition 5.2.26. The value of H at the origin is equal to the infinite product

C0 =
∏

p prime
p|S

(1− p−1)#ΓM◦
∑

m∈Mred

p−am

×
∏

p prime
p∤S

(1− p−1)#ΓM◦
∑

m∈Nn
red

p−am

and this quantity is positive. Here we recall am =
∑n

i=1miai. Furthermore, if L is
adjoint rigid, then #ΓM◦ = dim(X) + b(Q, (X,M), L).

Proof. Note that

H(s) = G(s + α)
∏

m∈ΓM◦

lm(s)ζ(lm(s) + 1),
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and

Gp(s) =

( ∑
m∈M

p−lm(s)

) ∏
m∈ΓM◦

(1− p−lm(s))

for any prime number p not dividing S and similarly

Gp(s) =

 ∑
m∈Nn

red

p−lm(s)

 ∏
m∈ΓM◦

(1− p−lm(s))

for any prime number p dividing S.
Thus the limit limz→0 zζ(z + 1) = 1 implies H(0, . . . , 0) = G(α). This gives the

desired identity for C0 under the assumption that the product converges. Each term
Cp in the product is positive and Cp = 1 + O(p−c), where the implied constant is
independent of p and c is the smallest between 2 and the minimum of all values
lm(α) = am for m ∈M \M◦, so the product thus converges to a positive constant.

Now assume that L is adjoint rigid with respect to (X,M). We claim that
this implies that the map N∨ → DivT (X,M) is injective. If it were not injec-
tive, then there exists µ ∈ N∨ such that pr∗M div(χµ) = 0. But then there ex-
ists c ∈ Q such that pr∗M div(c + χµ) is a nontrivial effective divisor on (X,M).
This implies that 0 ∈ Div(X,M) is not a rigid divisor, which contradicts the fact
that L is adjoint rigid with respect to (X,M). Thus Proposition 5.1.3 implies
#ΓM◦ = dim(X) + rank Pic(X,M◦). Furthermore, the proof of Proposition 5.2.19
shows rank Pic(X,M◦) = b(Q, (X,M), L), so we obtain the desired expression for
#ΓM◦ .

Now it remains to estimate the volume of the set D(B). In order to simplify
notation, we assume M = M◦, which we can do without loss of generality as the
definition of D(B) only depends on (X,M◦) and not on (X,M). The set D(B) is
a generalization of the set D(B) defined by Salberger [Sal98, Notation 11.28] in his
study of rational points on split toric varieties, and we will use the same approach he
used to estimate its volume.

We regard D(B) as a closed subset of the real locus of the universal torsor of
(X,M), where the universal torsor is as in Definition 5.1.15. As we assumed M = M◦

and a((X,M), L) = 1, we have pr∗M D = −D(X,M). In order to estimate the volume
of D(B), Salberger splits it up as D(B) = ∪σ∈ΣmaxD(B, σ) using what he calls the
toric canonical splitting [Sal98, Notation 11.31]. We will similarly split up D(B), but
we will use the splitting induced by the fan ΣM as given in Notation 5.1.12, rather
than Σ. The fan ΣM has the property that for all m ∈ ΓM , the ray spanned by an
element ϕ(m) ∈ N lies in ΣM , and all rays in ΣM are of this form. This property will
aid in computing D(B).

Since the dense torus in X is U = Hom(N∨,Gm), the real locus of the torus
is U(R) = Hom(N∨,R×). By composing with the logarithm of the absolute value
R× → R : x 7→ log |x|, we obtain a homomorphism

U(R)→ Hom(N∨,R×) = NR.

Recall that UM is the dense torus in the universal torsor YM of (X,M). The mor-
phism YM → X induces a homomorphism UM (R) → U(R). By composing these
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homomorphism with each other, we obtain a homomorphism

LogM : UM (R)→ Hom(N∨,R×) = NR.

For σ ∈ ΣM,max, write CM,σ,0(R) for the inverse image of −σ under the map LogM

and write D(B, σ) = D(B) ∩ CM,σ,0(R). Since for any two distinct maximal cones
σ, σ′, their intersection σ ∩ σ′ lies in a proper subspace of NR, the intersection of
D(B, σ) ∩D(B, σ′) has Lebesgue measure zero and thus

I(B) =

∫
D(B)

dx =
∑

σ∈ΣM,max

∫
D(B,σ)

dx, (5.2.2)

where the measure is the standard Lebesgue measure on RΓM . We will compute∫
D(B,σ)

dx for each maximal cone σ ∈ ΣM .

As in [Sal98, Proposition 11.22], we can describe when a point lies in CM,σ,0(R).
The cone σ contains exactly d = dimX rays. Let d1 be the number of rays in σ which
lie in ΣM . Let r = #ΣM(σ)(1) − d be the number of raysin ΣM(σ) which lie outside
of σ. Order the rays ρ1, . . . , ρr+d in ΣM(σ) such that ρr+1, . . . , ρr+d1

are the rays in
both σ and ΣM and ρr+1, . . . , ρr+d are the rays in σ. Let m1, . . . ,mr+d ∈ ΓM(σ) be

the elements corresponding to the rays ρ1, . . . ρr+d, and set n(i) = ϕ(mr+i) for i =
1, . . . , d. As n(1), . . . , n(d) are integer multiples of the ray generators of ρr+1, . . . , ρr+d,
they freely generate a finite-index sublattice Nσ of N . Let (µ(1), . . . , µ(d)) be the
corresponding dual Z-basis of N∨

σ ⊃ N∨ and set

D(i) =
∑

m∈ΓM

⟨µ(i), ϕ(m)⟩D̃m ∈ DivT (X,M)Q,

where D̃ρ is the prime divisor on (X,M) corresponding to the ray ρ. Note that

D(i) = pr∗M
∑

ρ∈Σ(1)

⟨µ(i), nρ⟩Dρ

by construction, so D(i) is Q-linearly equivalent to 0. Furthermore, since µ(1), . . . , µ(d)

is a basis for N∨
Q , (D(1), . . . , D(n)) is a basis for the vector space of all torus-invariant

Q-divisors on (X,M) linearly equivalent to 0.

Proposition 5.2.27. Let x ∈ [1,∞)ΓM . Then x ∈ CM,σ,0(R) if and only if xD(i) ≤ 1
for all i = 1, . . . , d.

Proof. The proof is identical to the proof of [Sal98, Proposition 11.22].

For i ∈ {1, . . . , r + d1}, we write D̃i := D̃mi
∈ Div(X,M) for the divisor corre-

sponding to the ray ρi ⊂ ΣM .
Set

E(i) := D̃r+i −D(i) if ρr+i ∈ ΣM (1)

and
E(i) := −D(i) if ρr+i ∈ ΣM (1) \ ΣM (1).

By construction, the divisor E(i) is supported on the divisors D̃m ∈ Div(X,M) such
that ϕ(m) ̸∈ σ and it is Q-linearly equivalent to D̃r+i if ρr+i ∈ ΣM (1) and otherwise
it is Q-linearly equivalent to 0.
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Notation 5.2.28. Note that for a maximal cone σ ∈ ΣM and a Q-divisor class L′ ∈
Pic(X,M)Q, there is a unique representative L′(σ) ∈ DivT (X,M)Q of L′ supported
only on the divisors D̃m ∈ Div(X,M) with ϕ(m) ̸∈ σ. For a maximal cone σ ∈ ΣM ,
we write (pr∗M L)(σ) for the restriction of (pr∗

M
L)(σ) to (X,M). Similarly, we write

D(X,M)(σ) ∈ Div(X,M)Q by viewing D′ = D(X,M) as a divisor on (X,M) and by
restricting D′(σ) to (X,M).

In particular, for a maximal cone σ ∈ ΣM and L ∈ Pic(X)Q,

(pr∗M L)(σ) = pr∗M (L(σ)),

where σ is the unique maximal cone in Σ containing σ.

Lemma 5.2.29. D(B, σ) is the set of all (x1, . . . , xr+d1) ∈ XM,0(R) ⊂ Rr+d1 satis-
fying

1. min(x1, . . . , xr+d1) ≥ 1,

2. x(pr∗M L)(σ) ≤ B,

3. xE(i) ≥ xr+i, for all i = 1, . . . , d1, and xE(i) ≥ 1, for all i = d1 + 1, . . . , d.

Proof. By Proposition 5.2.27, x ∈ [1,∞)ΓM lies in x ∈ CM,σ,0(R) if and only if the

first and third conditions are satisfied. Since x(pr∗M L)(σ) =
∏

m∈ΓM
x
lm(ej)
m for the

unique maximal cone σj ∈ Σ containing σ, it remains to show that x(pr∗M L)(σ) ≤ B is

equivalent to x(pr∗M L)(σ′) ≤ B for all σ′ ∈ ΣM . Because the divisors D(1), . . . , D(d)
generate the kernel of DivT (X,M)Q → Pic(X,M)Q, we must have (pr∗M L)(σ′) =

(pr∗M L)(σ) +
∑d

i=1 ciD(i), for c1, . . . , cd ∈ Q. Let σ and σ′ be the unique maximal
cones in Σ containing σ and σ′, respectively. By considering the pullbacks of L(σ) and
L(σ′) to (X,M), ci is equal to the coefficient of D̃r+i ∈ Div(X,M) in the pullback of
L(σ′)−L(σ) to (X,M), for all i ∈ {1, . . . , d}. As the coefficient of D̃r+i ∈ Div(X,M)
in pr∗M L(σ) is zero, and L is nef, me must have ci ≥ 0 for all i ∈ {1, . . . , d}. Therefore
Proposition 5.2.27 implies

x(pr∗M L)(σ′) ≤ x(pr∗M L)(σ),

as desired.

Similarly, we define Ω(B, σ) to be the set of all (x1, . . . , xr) satisfying

1. min(x1, . . . , xr) ≥ 1,

2. x(pr∗M L)(σ) ≤ B,

3. xE(i) ≥ 1, for all i = 1, . . . , d.

By Fubini’s theorem, we can compute D(B, σ) by first integrating with respect to
(xr+1, . . . , xr+d1

) and then with respect to (x1, . . . , xr):∫
D(B,σ)

dx =

∫
Ω(B,σ)

d1∏
i=1

(xE(i) − 1) dx1 . . . dxr (5.2.3)
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This equality combined with

d1∑
i=1

E(i) = −D(X,M)(σ)−
r∑

i=1

D̃i (5.2.4)

implies ∫
D(B,σ)

dx =

∫
Ω(B,σ)

x−D(X,M)(σ)
d1∏
i=1

(1− x−E(i))
dx1
x1

. . .
dxr
xr

. (5.2.5)

Let TM(σ) ⊂ YM(σ) be the Picard torus for the pair (X,M(σ)) as in Definition 5.1.15.

The projection YM(σ) ⊂ Ar+d
Q → Ar

Q onto the first r coordinates induces an analytic
homomorphism

TM(σ)(R)→ (R×)r

(x1, . . . , xr+d) 7→ (x1, . . . , xr)

of Lie groups. The identity component TM(σ)(R)+ of TM(σ)(R) ⊂ Rn is the set
of points with positive coordinates, and the analytic homomorphism restricts to
an analytic isomorphism TM(σ)(R)+ → Rr

>0. For i ∈ {1, . . . , d1}, the image of

E(i) in DivT (X,M(σ)) is Q-linearly equivalent to D̃r+i, so xE(i) = xr+i for all
x ∈ TM(σ)(R)+. Furthermore, since −D(X,M)(σ) is Q-linearly equivalent to −D(X,M),
viewed as Q-divisors on (X,M(σ)), the isomorphism identifies the set Ω(B, σ) with
the subset F (B) ⊂ TM(σ)(R) given by the elements (x1, . . . , xr+d) with

1. min(x1, . . . , xr) ≥ 1,

2. x(pr∗M L)(σ) ≤ B.

Under the isomorphism TM(σ)(R)+ → Rr
>0, the differential form dx1

x1
. . . dxr

xr
on

(R×)r corresponds to the torus-invariant differential form dx1

x1
. . . dxr

xr
on TM(σ)(R)+.

Consequently, we find the following analogue of [Sal98, Equation (11.37)]∫
D(B,σ)

dx =

∫
F (B)

x−D(X,M)

d1∏
i=1

(1− 1/xr+i)
dx1
x1

. . .
dxr
xr

. (5.2.6)

We will now first focus on estimating

I(B, σ) =

∫
F (B)

x−D(X,M)
dx1
x1

. . .
dxr
xr

, (5.2.7)

and then we show in Lemma 5.2.31 that
∫
D(B,σ)

dx ∼ I(B, σ) as B →∞.

There is an analytic isomorphism

ψ : TM(σ)(R)+ → V := Hom(Pic(X,M(σ)),R)

given by (x1, . . . , xr+d) 7→ (y1, . . . , yr+d), where yi = log xi for i ∈ {1, . . . , r + d}.
Let Hom≥0(Pic(X,M(σ)),R) ⊂ V be set of linear functions which are nonneg-

ative on effective divisor classes on (X,M(σ)). Then the isomorphism ψ sends the
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set T≥1
M(σ)(R) consisting of all (x1, . . . , xr+d) ∈ TM(σ)(R)+ with x1, . . . , xr+d ≥ 1 to

Hom≥0(Pic(X,M(σ)),R).
Let b = logB. The image Eb := ψ(F (B)) is the set of all φ ∈

Hom≥0(Pic(X,M(σ)),R) with φ(pr∗M L) ≤ b. Let ν be the Haar measure on V
such that the volume of V/Λ is 1 for the lattice Λ := Hom(Pic(X,M(σ)),Z). Under
the analytic isomorphism ψ, the differential form dx1

x1
. . . dxr

xr
gets sent to dy1 . . . dyr.

Recall that I(σ) is the index of ⟨D̃1, . . . , D̃r⟩ inside Pic(X,M(σ)). As ⟨D̃1, . . . , D̃r⟩
is torsion-free, it has index I(σ)

#Pic(X,M(σ))torsion
in Pic(X,M(σ))/{torsion}. Thus the

lattice Λ has index I(σ)
#Pic(X,M(σ))torsion

in ⟨[D̃1]∗, . . . , [D̃r]∗⟩. This implies

dy1 . . . dyr =
I(σ)

# Pic(X,M(σ))torsion
dν,

and thus Equation (5.2.7) becomes

I(B, σ) =
I(σ)

# Pic(X,M(σ))torsion

∫
Eb

exp(y1 + · · ·+ yr+d1
) dν. (5.2.8)

We write ãi for the coefficient of D̃i in pr∗M(σ) L. Note that pr∗M(σ) L+D(X,M) =∑r+d
i=r+d1+1 ãiD̃i, and ãi = 1 if i ≤ r + d1.

Let V ′′ ⊂ Rd−d1 be the vector space of linear functions ⟨[D̃r+d1+1], . . . , [D̃r+d]⟩ →
R. The projection V → V ′′ given by (y1, . . . , yr+d) 7→ (yr+d1+1, . . . , yr+d) im-
plies the existence of a splitting V ∼= V ′ × V ′′, where V ′ = {(y1, . . . , yr+d) ∈ V |
yr+d1+1, . . . , yr+d = 0}. The space V ′ is naturally identified with Hom(Pic(X,M),R),
and the Haar measure ν′ on V ′ induced by ν on V is the measure such that the volume
of V ′/Λ′ is 1, where Λ′ := Hom(Pic(X,M),Z). Similarly ν induces the Haar measure
ν′′ on V ′′ such that V ′′/Λ′′ has volume equal to 1, where Λ′′ is the image of Λ in
V ′′. Under the isomorphism V ∼= V ′×V ′′, the measure ν corresponds to the product
measure ν′ × ν′′, so Fubini’s theorem implies that

I(B, σ) =
I(σ)

# Pic(X,M(σ))torsion

×
∫
Eb∩V ′

exp(y1 + · · ·+ yr+d1) Volume(Zσ(b− y1 − · · · − yr+d1)) dν′

=
I(σ) Volume(Zσ(1))

# Pic(X,M(σ))torsion

×
∫
Eb∩V ′

exp(y1 + · · ·+ yr+d1
)(b− y1 − · · · − yr+d1

)dim(Zσ(1)) dν′,

where Zσ(c) = {(yr+d1+1, . . . , yr+d) ∈ V ′′ ∩ [0,∞)d−d1 |
∑r+d

i=r+d1+1 ãiyi ≤ c} is a
polytope and the volume is with respect to the measure ν′′. Note that the polytope
Zσ(1) is the polytope Zσ in Theorem 5.2.5.

Under the identification of V ′ with Hom(Pic(X,M),R), the subset Eb ∩ V ′ is
the set of linear forms φ which are nonnegative on effective divisors and such that
ϕ(−K(X,M)) ≤ b. Let λ : V ′ → R be the linear form

λ(y1, . . . , yr+d1
) = y1 + · · ·+ yr+d1
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obtained by evaluating at the anticanonical class −K(X,M) of (X,M). As the volume
of the fibre above any y ∈ [0,∞) is equal to

# Pic(X,M)torsionαPeyre((X,M), L)yb(Q,(X,M),L)−1,

where αPeyre((X,M), L) is as in Remark 5.2.4, integrating along the fibres of λ gives∫
Eb∩V ′

exp(y1 + · · ·+ yr+d1
)(b− y1 − · · · − yr+d1

)d−d1 dν′

=# Pic(X,M)torsionαPeyre((X,M), L)

×
∫ b

0

exp(y)yb(Q,(X,M),L)−1(b− y)dim(Z(1)) dy.

Thus we have shown the equality

I(B, σ) =
# Pic(X,M)torsionI(σ)αPeyre((X,M), L) Volume(Z(1))

# Pic(X,M(σ))torsion

×
∫ b

0

exp(y)yb(Q,(X,M),L)−1(b− y)dim(Zσ) dy.

(5.2.9)

We will now determine the main term in the integral.

Proposition 5.2.30. For all r, s ∈ N and b ∈ (1,∞),∫ b

0

exp(y)yr(b− y)s dy = s! exp(b)br +O(exp(b)br−1)

as b→∞.

Proof. Let

I(r, s, b) :=

∫ b

0

exp(y)yr(b− y)s dy.

If either r or s is zero, the integral is given by

I(r, 0, b) = exp(b)

r∑
k=0

(−1)k
r!

(r − k)!
br−k + (−1)r+1r!,

or

I(0, s, b) = exp(b)s!−
s∑

i=0

s!

(s− i)!
bs−i.

Further integrating by parts, we obtain I(r, s, b) = sI(r, s − 1, b) − rI(r − 1, s, b) if
r, s ≥ 1, which directly implies the result.

Therefore we find

I(B, σ) =
# Pic(X,M)torsionI(σ)αPeyre((X,M), L) Volume(Zσ) dim(Zσ)!

# Pic(X,M(σ))torsion

×B(logB)b(Q,(X,M),L)−1 +O(B(logB)b(Q,(X,M),L)−2).

(5.2.10)

To finish the proof of Theorem 5.2.5 for toric adjoint rigid divisors, all that remains
is to show that

∫
D(B,σ)

dx ∼ I(B, σ).
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Lemma 5.2.31. For every maximal cone σ ∈ ΣM ,∫
D(B,σ)

dx = I(B, σ) +O(B(logB)b(Q,(X,M),L)−2)

as B →∞, so (5.2.2) implies

I(B) =
∑

σ∈ΣM

I(B, σ) +O(B(logB)b(Q,(X,M),L)−2)

as B →∞.

Proof. By (5.2.6), it suffices to show

Ri =

∫
F (B)

x−D(X,M)/xi
dx1
x1

. . .
dxr
xr

= O(B(logB)b(Q,(X,M),L)−2)

as B →∞, for any i = r + 1, . . . , r + d1.
Let (X,M ′) be the pair given by M′ = M◦ \ {m}, where m is the element cor-

responding to the coordinate xi. Then Ri =
∫
F (B)

x−D(X,M′) dx1

x1
. . . dxr

xr
. We can

estimate this integral in exactly the same way as in the computation of the asymp-
totic growth of I(B, σ), to get

Ri = O(B(logB)b(Q,(X,M ′),L)−1)

as B →∞. Now since [D̃i] does not lie on the minimal face of Eff1(X,M) containing
pr∗M L + K(X,M), we have b(Q, (X,M ′), L) = b(Q, (X,M), L) − 1, which gives the
result.

Putting everything together, we conclude that the polynomial Q satisfies

Q(logB) = 2dimXC0C̃(logB)b(Q,(X,M),L)−1 +O((logB)b(Q,(X,M),L)−2),

where

C0 =
∏

p prime
p|S

(1− p−1)#ΓM◦
∑

m∈Mred

p−am

×
∏

p prime
p∤S

(1− p−1)#ΓM◦
∑

m∈Nn
red

p−am ,

and
C̃ = αPeyre((X,M), L)

∑
σ∈ΣM,max

I(σ)C∞(σ),

where

C∞(σ) =
Pic(X,M)torsion

Pic(X,M(σ))torsion
Volume(Zσ) dim(Zσ)!.

This finishes the proof of the toric adjoint rigid case of the theorem.
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The leading constant in the adjoint rigid case. From now on we will assume
that L is adjoint rigid with respect to (X,M). As this implies that L is toric adjoint
rigid with respect to (X,M), we can use the expression we derived for the leading
coefficient of Q. We have already seen in Proposition 5.2.26 that #ΓM◦ = dim(X) +
b(Q, (X,M), L). Therefore, all that remains is to prove

C̃ = αPeyre((X,M), L)C∞,

where C∞ is the constant given in Theorem 5.2.5 in the adjoint rigid case. We start
by computing the volume of the simplex Zσ.

Proposition 5.2.32. The simplex Zσ has dimension d− d1 and its volume is given
by

Volume(Zσ) =
Pic(X,M(σ))torsion

(d− d1)!# Pic(X,M)torsion
∏r+d

i=r+d1+1 ãi
,

where we recall that ãi is the coefficient of D̃i in pr∗M(σ) L.

Proof. By Proposition 5.2.25, the Q-divisor class pr∗
M
L + K(X,M) is rigid, so the

subgroup G of Pic(X,M(σ)) generated by the divisors classes [D̃r+d1+1], . . . , [D̃r+d]
is a free abelian group of rank d − d1. Therefore V ′′ ∼= Rd−d1 , and Zσ ⊂ V ′′ is a
simplex with vertices

(ã−1
r+d1+1, 0, . . . , 0), . . . , (0, . . . , 0, ã−1

r+d).

Thus the volume of Zσ is given by

Volume(Zσ) =
Volume([0, 1]d−d1)

(d− d1)!
∏r+d

i=r+d1+1 ãi
.

The volume of the hypercube [0, 1]d−d1 with respect to the measure ν′′ is the reciprocal
of the order of the kernel of the quotient homomorphism Pic(X,M(σ))/{torsion} →
Pic(X,M)/{torsion} induced by the restriction Div(X,M(σ)) → Div(X,M). Since
the kernel G of Pic(X,M(σ)) → Pic(X,M) is torsion-free, the volume of the hyper-

cube is Volume([0, 1]d−d1) = #Pic(X,M(σ))torsion
#Pic(X,M)torsion

.

The previous proposition implies

C∞(σ) =
∏

m∈ΓM
ρm∈σ

1

am

so

C̃ = αPeyre((X,M), L)
∑

σ∈ΣM,max

I(σ)
∏

m∈ΓM
ρm∈σ

1

am
.

The following proposition finishes the proof of Theorem 5.2.5.
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Proposition 5.2.33. For every maximal cone σ′ ∈ Σ, we have

∑
σ⊂σ′

I(σ)
∏

m∈ΓM
ρm∈σ

1

am
=

n∏
i=1

ρi⊂σ′

1

ai
,

where the sum runs over all maximal cones in ΣM contained in σ′.

Proof. Let σ be a maximal cone in ΣM . The index I(σ) is equal to the cardinality of
the quotient of Pic(X,M(σ)) by the divisors {Dm | m ∈ ΓM(σ), ϕ(m) ̸∈ σ}. We can
view this quotient as the Picard group of the pair (X,Mσ), where

Mσ = {(0, . . . , 0)} ∪ {m ∈ ΓM(σ) | ϕ(m) ∈ σ}.

Now Proposition 5.1.3 implies that Pic(X,Mσ) is the cokernel of the homomor-
phism N∨ → DivT (X,Mσ). As σ is a cone of dimension d, this homomorphism
is an embedding of lattices of the same rank. Thus # Pic(X,Mσ) is the index of
DivT (X,Mσ)∨ in N , where the embedding is given by the dual of the homomorphism.
As the image of a divisor D̃m inN is ϕ(m), this implies that Pic(X,Mσ) has |N : NMσ |
elements, where we recall that NMσ is the lattice spanned by {ϕ(m) |m ∈Mσ}. We
choose a basis of N ∼= Zd so that σ′ = [0,∞)d and we write ΓMσ

= {m1, . . . ,md}.
The set {ϕ(m) | m ∈ ΓMσ

} is a basis of NQ, so I(σ) = |N : NMσ
| is equal to the

absolute value of the determinant ϕ(m1) ∧ · · · ∧ ϕ(md).
We will prove the desired identity by viewing both sides as an exponential integral

over a cone. We order the divisors D1, . . . , Dn on X such that ρ1, . . . , ρd ∈ σ′. Note
that

d∏
i=1

1

ai
=

∫
[0,∞)d

e−a1x1−···−adxd dx1 . . . dxd.

We split up the domain of integration into the maximal cones σ ∈ ΣM contained in
σ′ = [0,∞)d:∫

[0,∞)d
e−a1x1−···−adxd dx1 . . . dxd =

∑
σ⊂σ′

∫
σ

e−a1x1−···−adxd dx1 . . . dxd.

Now the formula [Bar93, Example 2.1] for the exponential integral over a cone gives∫
σ

e−a1x1−···−adxd dx1 . . . dxd = |ϕ(m1) ∧ · · · ∧ ϕ(md)|
d∏

i=1

1

⟨a, ϕ(mi)⟩

where a = (a1, . . . , an). Since ⟨a, ϕ(mi)⟩ = ami
, this implies∫

σ

e−a1x1−···−adxd dx1 . . . dxd = I(σ)
∏

m∈ΓM
ρm∈σ

1

am
,

which implies the desired identity.
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Samenvatting

De getaltheorie is een prominente tak van de wiskunde toegewijd aan de studie van de
gehele getallen. Een belangrijk thema hierbinnen is het bestuderen van speciale verza-
melingen van getallen, zoals de priemgetallen, de kwadraten, kwadraatvrije getallen
en nog veel meer. Voor zo een verzameling zijn er twee belangrijke vraagstukken:

� Hoeveel zijn er, als een aandeel van alle getallen?

� Hoe zijn ze verdeeld?

Veel verzamelingen waar wiskundigen in gëınteresseerd zijn zijn oneindig, maar
meestal bevatten ze maar 0% van de gehele getallen. Zo is de verzameling kwadraten
1, 4, 9, 16, 25, . . . oneindig, maar is het aantal kwadraten kleiner dan een getal B
ongeveer

√
B, veel kleiner dan B zelf. Daarentegen komen kwadraatvrije getallen

(1, 2, 3, 5, 6, 7, 9, . . . ) veel meer voor: het aantal kwadraatvrije getallen kleiner dan B
is ongeveer 6

π2B. In het bijzonder is ongeveer 60,8% van de getallen kwadraatvrij.
Een van de onderwerpen in mijn proefschrift is een veralgemenisering van zulk

soort telproblemen naar hogere dimensies. Dit leidt bijvoorbeeld tot vraagstukken
als: hoe veel komen tripels van gehele getallen (n,m, k) voor zodat nmk een kwadraat
is?

Priemontbindingen en M-punten

Om dit soort problemen te bestuderen heb ik in mijn proefschrift de theorie van
M-punten gëıntroduceerd. Deze theorie geeft een manier om deze problemen te
bestuderen vanuit het oogpunt van de algebräısche meetkunde, en is een natuurlijke
uitbreiding van de theorie van Campanapunten.

Priemontbindingen spelen een belangrijke rol in dit verhaal. Elk geheel getal
kan geschreven worden als een product van de priemgetallen die het getal delen. Zo
hebben we 9 = 32, 10 = 2 ·5 en 72 = 23 ·32. Voor een geheel getal k en een priemgetal
p is de multipliciteit vp(k) van n bij p het aantal keer waarmee k door p deelbaar is.
In andere woorden, het is de macht waarmee p voorkomt in de priemontbinding van
k. Zo is v2(9) = 0, v2(10) = 1 en v2(72) = 3. We definiëren de multipliciteit ook voor
tupels (geordende lijsten) van gehele getallen door te stellen dat de multipliciteit van
een tupel (a1, . . . , an) bij p wordt gegeven door de multipliciteit van alle coördinaten
samen:

multp(a1, . . . , an) = (vp(a1), . . . , vp(an)).

Bijvoorbeeld, de multipliciteit van (9, 10, 72) bij 2 is dus mult2(9, 10, 72) = (0, 1, 3).
We kunnen dit gebruiken om M-punten op projectieve ruimte en torische

variëteiten te beschrijven. In de meetkunde zijn projectieve ruimten fundamentele
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objecten. Op de projectieve ruimte Pn−1 zijn de (rationale) punten gegeven door
de tupels (a1 : · · · : an) van breuken a1, . . . , an, met de schalingsrelatie (ca1 : · · · :
can) = (a1 : · · · : an) voor alle breuken c ̸= 0. In het bijzonder kan elk rationaal punt
geschreven worden als (a1 : · · · : an), waar a1, . . . , an geheel zijn en geen gemeenschap-
pelijke deler hebben. Voor andere torische variëteiten is er een analoge beschrijving
van de rationale punten, met een andere schalingsrelatie.

Neem nu een deelverzameling M ⊂ Nn van de n-tupels van natuurlijke getallen. In
andere woorden, M is een verzameling van tupels van de vorm (m1, . . . ,mn), waarbij
m1, . . . ,mn allemaal natuurlijke getallen zijn. Dan is de bijbehorende collectie van
M-punten de verzameling van alle (a1 : · · · : an) zodat zijn multipliciteit voor elk
priemgetal p in M ligt.

Bijvoorbeeld, als n = 2 en M de verzameling is die bestaat uit (0, 0), (1, 0), (0, 1),
dan zijn de M-punten de paren (a1, a2) waarbij beide kwadraatvrij zijn en geen
gemeenschappelijke delers hebben. Door M anders te kiezen kunnnen we veel andere
interessante verzamelingen krijgen, zoals de tripels (n,m, k) zodat hun product een
kwadraat is en ze geen gemeenschappelijke factor samen hebben. In Sectie 2.1.4
worden nog veel andere voorbeelden gegeven.

M-punten van begrensde hoogte

Voor een punt (a1, . . . , an) op projectieve ruimte is er een natuurlijk begrip van
grootte, namelijk de hoogte:

H(a1 : · · · : an) = max(|a1|, . . . , |an|),

het maximum van de coördinaten waar mintekens buiten beschouwing worden gelaten.
Dus, voor een gegeven verzameling M kunnen we ons afvragen hoeveel M-punten er
zijn met hoogte kleiner dan een getal B. In mijn proefschrift heb ik bewezen in
Theorem 1.2.7 dat dit aantal neigt naar cBa log(B)b−1 als B naar oneindig gaat voor
constanten a, b, c > 0. In andere woorden, als B groot is, dan is het aantalM-punten
met hoogte hooguit B ongeveer

cBa log(B)b−1.

De constanten a en b hier zijn expliciet en hebben een meetkundige interpretatie.
Als we een milde aanname doen op de verzameling M, kunnen we c ook expliciet
uitrekenen.

Bijvoorbeeld, het aantal tripels (n,m, k) van gehele getallen zodat nmk
kwadraatvol is en ze alledrie kleiner dan B zijn is ongeveer gelijk aan
1,724

√
B3 log(B)3. (Een getal is kwadraatvol als het geschreven kan worden als een

product van een kwadraat en een derde macht, of equivalent: de multipliciteit van
het getal bij elk priemgetal is ongelijk aan 1.)

Algemener kunnen op andere variëteiten (ruimtes beschreven door vergelijkin-
gen) ook hoogtes en M-punten worden geformuleerd. Met deze hoogtes geeft The-
orem 1.2.7 ook een beschrijving van het aantal M-punten van begrensde hoogte op
(gespleten) torische variëteiten. Deze resultaten breiden de resultaten van Pieropan
en Schindler [PS24a] voor torische variëteiten uit van Campanapunten tot de veel
algemenere setting van M-punten. In het bijzonder geeft Theorem 1.2.7 ook een
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beschrijving van het aantal zogehete zwakke Campanapunten van begrensde hoogte,
zoals bijvoorbeeld het gegeven voorbeeld hierboven. Dit was al door eerdere auteurs
bestudeerd, maar die hadden geen resultaten of voorspellingen voor hoeveel er zijn.

Verspreiding van M-punten

Een ander onderwerp dat ik heb bestudeerd in mijn proefschrift is de verdeling van
M-punten op projectieve ruimte en andere torische variëteiten. Hiervoor werken we
met modulorekenen. Voor gehele getallen n,m is n mod m het unieke gehele getal
k tussen 0 en m − 1 waarvoor we n = am + k kunnen schrijven, waar a geheel
is. Oftewel n mod m is de rest na deling door m. We zijn gëınteresseerd in de
volgende vraag: gegeven een macht van een priemgetal p, zijn alle tupels (b1, . . . , bn)
met 0 < b1, . . . , bn < m van de vorm (a1 mod m, . . . , an mod m) voor een M-punt
(a1 : · · · : an)? Als dit kan, dan zeggen we dat M-benadering geldt.

In het algemeen is dit niet het geval. Zo kan dit niet gedaan worden op de projec-
tieve lijn P1 met M gegeven door de paren van even getallen. Voor deze keuze van
M zijn de M-punten gegeven door tupels van de vorm (a2 : b2) of (−a2 : b2) met a
en b gehele getallen, en het paar (2, 1) is niet te schrijven als (a2 mod 5, b2 mod 5) of
(−a2 mod 5, b2 mod 5). In mijn proefschrift heb ik een manier gevonden om eenvoudig
te bepalen of M-benadering geldt voor projectieve ruimte of in algemener een (ges-
pleten) torische variëteit, gegeven in Theorem 1.1.3. Dit is een brede uitbreiding van
het recente werk van Nakahara en Streeter [NS24], die aantoonden datM-benadering
geldt in de beperktere setting van Campanapunten.
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(4), 53(4):1037–1070, 2020. issn: 0012-9593,1873-2151. doi: 10.24033/
asens.2439.

https://doi.org/10.1007/978-1-4612-1210-2
https://doi.org/10.1007/978-1-4612-1210-2
https://doi.org/10.1215/S0012-7094-00-10436-X
https://doi.org/10.1215/S0012-7094-00-10436-X
https://doi.org/10.1007/s00222-005-0458-8
https://doi.org/10.1215/00127094-2022-0045
https://doi.org/10.1016/j.jalgebra.2013.10.007
https://doi.org/10.1007/978-1-4613-0041-0
https://doi.org/10.1007/BF01444310
https://doi.org/10.1007/978-1-4612-0853-2
https://doi.org/10.1007/978-1-4612-0853-2
https://doi.org/10.1016/j.jnt.2015.07.015
https://doi.org/10.24033/asens.2439
https://doi.org/10.24033/asens.2439


150 Bibliography

[LST22] Brian Lehmann, Akash Kumar Sengupta, and Sho Tanimoto. Geometric
consistency of Manin’s conjecture. Compos. Math., 158(6):1375–1427,
2022. issn: 0010-437X,1570-5846. doi: 10.1112/s0010437x22007588.

[Luc14] G. Lucchini Arteche. Approximation faible et principe de Hasse pour
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