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Abstract

In recent years, Zudilin and Rogers have developed a method to write
L-values attached to elliptic curves as periods. In order to apply this to a
broader collection of L-values, we define Eisenstein series and determine their
Fourier series at the cusps. As an illustrating example, we write the L-values
of an elliptic curve of conductor 32 as an integral of Eisenstein series and
evaluate the value at 4 explicitly as a period.
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1 Introduction

1.1 Periods

At the start of a mathematics study, students learn successively about different kind
of numbers. We start by learning about natural numbers

N = {0, 1, 2, 3, . . . }.

Afterwards we add the negative numbers to get the integers:

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Then by including fractions we get the rationals:

Q =

{
p

q

∣∣∣∣ p, q ∈ Z, q 6= 0

}
.

By adding the limits of Cauchy sequences we get the real numbers R. By formally
adding an element i whose square is −1 and extending it linearly we obtain the
complex numbers:

C = {x+ iy | x, y ∈ R}.

An useful property of the complex numbers is that they form an algebraically closed
field, which means that any nonconstant polynomial with complex coefficients has
a root in C. If we restrict to the numbers that are the solutions of polynomial (or
equivalently, algebraic) equations with rational coefficients, we obtain the algebraic
numbers Q ⊂ C.

We therefore have the hierarchy

N ⊂ Z ⊂ Q ⊂ Q
∩ ∩
R ⊂ C

.

Often numbers are classified by considering their position in this hierarchy. There is a
big difference in size of the set of algebraic numbers Q compared to the set of complex
numbers C. The set of algebraic numbers is countable, as the set of polynomials
can be enumerated, the complex numbers on the other hand are uncountable, by
Cantor’s diagonal argument. Due to the small size of the collection of algebraic
numbers, many important constants, such as π and log(2) are not contained in it
(Lindemann, 1882).

However, it is possible to define a class of numbers that includes these numbers,
and much more, while still remaining countable. A natural choice for such a class are
the periods. A period is a complex number which real part and imaginary part are
both (absolutely convergent) integrals of rational functions with rational coefficients
over domains in Rn defined by polynomial inequalities with rational coefficients [2].
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The functions can also be chosen to be algebraic instead without any harm. The set
of periods P forms a countable ring, which contains the algebraic numbers Q. For
example,

√
2 =

∫
2x2≤1

dx.

The ring also contains other important constants such as

π =

∫∫
x2+y2≤1

dx dy =

∫ ∞
−∞

dx

1 + x2

and integer values of the Riemann zeta function, k > 1,

ζ(k) =
∞∑
n=1

1

nk
=

∫
· · ·
∫

[0,1]k

dx1 dx2 . . . dxk
1− x1x2 . . . xk

.

The extended period ring P̂ := P[1/π] contains a large collection of natural
examples, such as values of generalized hypergeometric functions at algebraic points
[6] and special L-values. As an example, a theorem by Beilinson and Deninger–Scholl
states that the (non-critical) value of the L-series attached to a cusp form f(τ) of
weight k at a positive integer m ≥ k (see the definitions and formula (1) below)

belongs to P̂. Although the proof of the theorem is effective, computing these L-
values as periods remains a very tough problem even in particular cases. Most of
these computations are motivated by (conjectural) evaluations of the logarithmic
Mahler measures of multivariate polynomials as L-values, where a Mahler measure
of an polynomial P ∈ Z[x1, . . . , xk] is defined as the following integral:

m(P ) =
1

(2πi)k

∫
· · ·
∫

|x1|=···=|xk|=1

log |P (x1, . . . , xk)|
dx1

x1

. . .
dxk
xk

.

With this purpose, Rogers and Zudilin have developed a setup [3, 4] for writing
L-values L(E, 2) of cusp forms f(τ) of weight 2 as periods. Zudilin [9] later described
an algorithm behind the method, which is not restricted to the weight. This can be
used in principle to compute arbitrary L(E, k)-values of an elliptic curve as periods,
provided k ≥ 2. However, even with this method, evaluating an L-value as a period
remains a difficult task.

1.2 Modular forms and L-functions

In this thesis, a general notion of Eisenstein series is introduced and their Fourier
series at cusps are studied. They are used to help with executing the method of
Rogers and Zudilin [3, 4]. We present an example of evaluating L(E, 4) as a period,
a task that was never explicitly one before. After this, we show how the results on
Eisenstein series can be used to write the L-values of the same curve as an integral
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of products of two of such series. The main results in this thesis are Theorems 1
(section 2), 2 (section 7) and 3 (section 8).

Two important concepts used in this thesis are modular forms and modular
functions, which we shall now define. Let Γ be a subgroup, of finite index, of the
modular group

SL2(Z) =

{(
a b
c d

) ∣∣∣∣ ad− bc = 1

}
,

which acts on the extended upper half plane (with added cusps)

H = {τ ∈ C | Im(τ) > 0} ∪Q ∪ {i∞}

by Möbius transformations: (
a b
c d

)
τ =

aτ + b

cτ + d
.

A modular form f of weight k for Γ is a holomorphic function on H such that

f (( a bc d ) τ) = (cτ + d)kf(τ) for all ( a bc d ) ∈ Γ,

along with the requirement that f(τ− c
d
) possesses a Fourier expansion

∑∞
n=0 ane

2ıinτ/N

(for some N ∈ N) for every c
d
∈ Q. A cusp form is a modular form such that f(τ)

vanishes at τ ∈ Q ∪ {i∞}, that is, at every cusp. A modular function f is a mero-
morphic function that is Γ-invariant (it has weight k = 0) along with the property
that f(τ − c

d
) possesses a Fourier expansion

∑∞
n=−m ane

2ıinτ/N (for some N,m ∈ N)
for every c

d
∈ Q.

Throughout this thesis, we will use the notation q = e2πiτ for τ in the upper half
plane Im τ > 0, so |q| < 1. With this notation, modular forms are therefore power
series in q1/N , for some natural number N , while modular functions are Laurent
series in q1/N with finitely many negative powers. For functions of variable q or τ ,
we will use the differential operator

δ =
1

2πi

d

dτ
= q

d

dq

and denote by δ−1 the corresponding anti-derivative normalized by 0 at τ = i∞ (or
at q = 0):

δ−1f =

∫ q

0

f
dq

q
.

In particular, for a modular form f(τ) =
∑∞

n=1 anq
n whose expansion vanishes at

infinity, we have

L(f, k) :=
1

(k − 1)!

∫ 1

0

f logk−1 q
dq

q
=

(2π)k

(k − 1)!

∫ ∞
0

f(it)tk−1 dt, (1)
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and

L(f, k) =
∞∑
n=1

an
nk

= (δ−kf)|q=1

whenever the latter sum makes sense.
We use two standard constructors of modular forms and modular functions:

Eisenstein series and Dedekind’s eta function. The Eisenstein series will be the focus
of the first part of the thesis; they are defined in the next section. The Dedekind
eta function is defined as follows:

η(τ) := q1/24

∞∏
m=1

(1− qm) =
∞∑

n=−∞

(−1)nq(6n+1)2/24;

its modular involution reads

η(−1/τ) =
√
−iτη(τ). (2)

We also set ηk(τ) := η(kτ) for short.
As an illustration of the ideas in this paper, the L-values of an elliptic curve of

conductor 32 will be studied. An example of such a curve is

y2 = x3 − x.

By the modularity theorem for any elliptic curve E, there exists an associated cusp
form f of weight 2 such that the L-function L(E, s) of the curve coincides with the
L-function L(f, s). In the case of conductor 32, this cusp form is

f(τ) = η2
4η

2
8.

This special modular form satisfies many properties, such as multiplicativity of the
Fourier coefficients: if

f(τ) =
∞∑
n=1

anq
n,

then anm = anam for n and m relatively prime. This cusp form is intimately con-
nected to the number of points Np on the curve modulo a prime p (including the
point at infinity), as its Fourier coefficients satisfy ap = p + 1 − Np for almost all
primes p.

We will also sometimes use the generalized hypergeometric functions, which is
defined by the series

k+1Fk

(
a0, a1, . . . , ak
b1, . . . , bk

∣∣∣∣ z) =
∞∑
n=0

(a0)n(a1)n . . . (ak)n
(b1)n . . . (bk)n

zn

n!

in the disk |z| < 1; here (a)n := Γ(a + n)/Γ(a) =
∏n−1

m=0(a + m) represents the
Pochhammer symbol. The properties of the series, such as integral representations
and analytic continuation can be found in Slater’s treatise [6, §4].
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In later sections, sometimes an equality is established between two different
modular forms of weight k for some subgroup Γ of SL2(Z) that has finite index m
using only the first terms of the Fourier expansions. This is justified by using the
Sturm bound [7, Corollary 9.20], which states that if the first km/12 terms of the
Fourier expansions are equal, then the forms are identical. In practice, the constants
k (the weight) and m (the level) tend to be small, so equality is easy to verify.

Acknowledgements. I owe a great debt to all who have aided me in my thesis and
in my study. In particular I am deeply grateful for my advisor Wadim Zudilin, who
has taught me many things and advised me on several matters, such as how to write
a thesis and how to do mathematical research. He also introduced me to several
interesting topics, among which is the topic of this thesis. I would also like to thank
the Radboud University for allowing me to take part in their Honours programme.
It allowed me to have research visits abroad. One of these was at the ENS Lyon,
where I had advice from François Brunault and Riccardo Pengo and also learned
a lot about algebraic geometry and its connection to my thesis. The other was at
the TU Darmstadt, where Michalis Neururer gave more advice and taught me more
about modular forms and Sage. I am very grateful for their time and wisdom, both
at a mathematical and personal level.

2 Eisenstein series

The work of Y. Yang [8] provided us with transformation laws for the generalized
Dedekind eta functions of level N :

ga,b(τ) = qB(a/N)/2
∏
m≥1

m≡a mod N

(1− ζbNqm)
∏
m≥1

m≡−a mod N

(1− ζ−bN qm), (3)

where q = e2πiτ and B(x) = {x}2 − {x}+ 1/6

whose logarithms may be viewed as Eisenstein series of weight zero. Similarly, there
are very classical transformation laws for the following Eisenstein series of weight k
and level N , as described by Schoeneberg [5, Chapter 7], if k > 2:

GN,k,(a,b)(τ) =
∑′

m≡a
n≡b mod N

(mτ + n)−k, (4)

where the dash means that (m,n) = (0, 0) is excluded from summation. When k = 1
or 2, it is defined similarly, though analytic continuation is required to circumvent
the lack of absolute convergence.

We will unify these two notions and use the transformation laws to find two
different expansions of the series at their cusps.

In order to do this, we take integers N , k, a and b, where k is nonnegative and
N is positive. Before introducing general Eisenstein series, we need to define their
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constant terms:

γa,b(τ) =


βkα

N,k
a,b if k 6= 0, 2

−πiτNB(a/N) if k = 0

β2

(
αN,2a,b − 2πi

N2(Nτ−Nτ)

)
if k = 2;

where

βk =
(k − 1)!

(−2πi)k
,

and α = αN,ka,b is defined by setting

αN,ka,b = 0 if a ≡ 0 mod N

and otherwise, when k > 1:

αN,ka,b =
∑′

m∈Z
m≡b

m−k =
1

Nk

[
ζ

(
k,

{
b

N

})
+ (−1)kζ

(
k,−

{
b

N

})]
,

and when k = 1:

αN,ka,b =
1

N
lim
s→0

[
ζ

(
1 + s,

{
b

N

})
− ζ
(

1 + s,−
{
b

N

})]
− πi

N

[
ζ

(
0,

{
a

N

})
− ζ
(

0,−
{
a

N

})]
,

where ζ(s, t) denotes the Hurwitz zeta function, and {x} denotes the fractional part
of x. Now we define the Eisenstein series Ea,b = EN,k

a,b of level N and weight k as

Ea,b(τ) = γa,b(τ) +
∑
n,m≥1

m≡a mod N

ζbnN n
k−1qmn + (−1)k

∑
n,m≥1

m≡−a mod N

ζ−bnN nk−1qmn, (5)

where ζN = e
2πi
N . Note that we can even write γa,b = γ∗,b if k > 1 and a 6≡ 0, because

γa,b does not depend on a in that case.
With this definition we will later see that

EN,0
a,b (τ) = − log ga,b(τ), (6)

and
EN,k
a,b (τ) = βkGN,k,(a,b)(Nτ) for any k > 0. (7)

We are now ready to formulate the theorem.
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3 Expansions for the Eisenstein series at its cusps

In order to express the expansions of Ea,b around c
N

where c is an integer, define

EN,k
a,b,c(τ) = Ea,b,c(τ) = Ea,b

( c
N

+ τ
)
.

The following theorem gives two Fourier expansions for this general Eisenstein series.

Theorem 1. For a, b, c arbitrary integers, Ea,b,c = EN,k
a,b,c possesses the following

expansions:

Ea,b,c(τ) = Ea,−a′(τ) + γa,b(τ)− γa,−a′(τ) + δk,0 · πicB(a/N) (8)

and

Ea,b,c(τ)(Nτ)k = Ea′,a

(
−1

N2τ

)
+ γa′,b′

(
−1

N2τ

)
− γa′,a

(
−1

N2τ

)
+ δk,0 · πi

(
µ− icB(a′/N)

)
, (9)

where δij denotes the Kronecker delta, a′ = −ac− b, b′ = a(c2 + 1) + bc and µ is a
rational number such that

µ ≡ −((a′)2c+ 2a′b′)(c2 + 1) + (b′)2c

N2
+
a′(c2 + 1) + b′(c+ 1)

N
− 1

2
mod 2. (10)

If we take c to be zero, we obtain the following corollary.

Corollary 1. For any integers a and b, Ea,b = EN,k
a,b satisfies

Ea,b(τ)(Nτ)k = E−b,a

(
−1

N2τ

)
+ δk,0πiµ (11)

with

µ ≡ −2ab

N2
+
a− b
N
− 1

2
mod 2.

Below we make occasional use of the identity

EN,k
−a,−b(τ) = (−1)kEN,k

a,b (τ) + δk,0πiτN(B(a/N)−B(−a/N)),

which is an immediate consequence of the definition of EN,k
a,b .

4 Proof of Theorem 1 for weight equal to 0

Recall Yang’s [8, Theorem 1] definition of the generalized Dedekind eta functions
ηa,b(τ) of level N with q = e2πiτ :

ga,b(τ) = qNB(a/N)/2
∏
m≥1

m≡a mod N

(1− ζbNqm)
∏
m≥1

m≡−a mod N

(1− ζ−bN qm)
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with
B(x) = {x}2 − {x}+ 1/6,

where the notation ζN represents e2πi/N . (Note that our ga,b(τ) coincide with
Ea,b(Nτ) in Yang’s paper.)

Therefore we have

ga,b(c/N + τ) = exp(πi(c+Nτ)B(a/N))

×
∏
m≥1

m≡a mod N

(1− ζbN exp(2πim(c/N + τ)))

×
∏
m≥1

m≡−a mod N

(1− ζ−bN exp(2πim(c/N + τ)))

= exp(πi(c+Nτ)B(a/N))

×
∏
m≥1

m≡a mod N

(1− ζb+mcN qm)
∏
m≥1

m≡−a mod N

(1− ζ−b+mcN qm).

In what follows we fix the principal value of the logarithm, so that − log(1 − z) =∑∞
n=1

zn

n
for z inside the unit disk. Taking logarithms on both sides we obtain

log ga,b(c/N + τ) =πicB(a/N) + πiτNB(a/N)∑
m≥1

m≡a mod N

log(1− ζb+acN qm)
∑
m≥1

m≡−a mod N

log(1− ζ−b+acN qm)

= πicB(a/N) + πiτNB(a/N)

−
∑
m,n≥1

m≡a mod N

ζbn+acn
N qmn

n
−

∑
m,n≥1

m≡−a mod N

ζ−bn−acnN qmn

n

= −Ea,ac+b(τ) + πicB(a/N),

which establishes both the identity − log ga,b = Ea,b in (6) and the Fourier expansion
(8) in the theorem.

Now we will proceed with the expansion (9). For this we will apply
[8, Theorem 1] on ga,b(τ/N), where we choose the matrix γ to be

A =

(
c −c2 − 1
1 −c

)
. (12)

That theorem implies

ga′,b′
( 1

N

(
c −c2−1
1 −c

)
τ
)

= eπiµga,b(τ/N),
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where

(a′ b′) = (a b)

(
c −c2 − 1
1 −c

)−1

= −(a b)

(
c −c2 − 1
1 −c

)
= (−ac− b a(c2 + 1) + bc).

(13)
Therefore,

ga,b(τ/N) = ga′,b′

(
cτ − (c2 + 1)

N(τ − c)

)
e−πiµ

implying

ga,b(τ) = ga′,b′

(
cNτ − (c2 + 1)

N(Nτ − c)

)
e−πiµ

= ga′,b′

(
cτ − (c2 + 1)/N

Nτ − c

)
e−πiµ,

By setting

τ ′ =
ct− (c2 + 1)/N

Nt− c

∣∣∣∣
t=c/N+τ

=
c

N
− 1

N2τ
,

we have

log ga′,b′(τ
′) = −Ea′,b′

(
c

N
− 1

N2τ

)
= πicB(a′/N)− πiB(a′/N)

Nτ

−
∑
m,n≥1

m≡a′ mod N

ζb
′n
N

n
exp

(
2πic

N
− 2πimn

N2τ

)

−
∑
m,n≥1

m≡−a′ mod N

ζ−b
′n

N

n
exp

(
2πic

N
− 2πimn

N2τ

)

= πicB(a′/N)− πiB(a′/N)

Nτ

−
∑
m,n≥1

m≡a′ mod N

ζb
′n+a′cn
N

n
exp

(
−2πimn

N2τ

)

−
∑
m,n≥1

m≡−a′ mod N

ζ−b
′n−a′cn

N

n
exp

(
−2πimn

N2τ

)
.
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Thus, we obtain

log ga,b

(
c

N
+ τ

)
= −πiµ+ πicB(a′/N)− πiB(a′/N)

Nτ

−
∑
m,n≥1

m≡a′ mod N

ζanN
n

exp

(
−2πmni

N2τ

)

−
∑
m,n≥1

m≡−a′ mod N

ζ−anN

n
exp

(
−2πmni

N2τ

)
,

and the Fourier expansion (9) follows.

5 Proof of Theorem 1 for positive weight

In [5, Chapter 7], the following expansions for GN,k,(a,b) in (4) are given:

GN,k,(a,b)(τ) = αN,ka,b +
1

βk

∑
m≡a mod N

∑
nm>0

nk−1 · sgn n · e
2πi
N

(bn+τnm)

− δk,2
2πi

N2(τ − τ)

= αN,ka,b

+
1

βk

( ∑
m,n≥1

m≡a mod N

nk−1e
2πi
N

(bn+τnm) + (−1)k
∑
m,n≥1

m≡−a mod N

nk−1e
2πi
N

(−bn+τnm)

)

− δk,2
2πi

N2(τ − τ)
.

Thus Ea,b(τ) = GN,k,(a,b)(Nτ) as previously asserted in (7).

We will now derive Fourier expansions of EN,k
a,b,c(τ) for k > 0, in terms of τ and

− 1
N2τ

, similarly to what was done for EN,0
a,b,c.
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5.1 Expansion in τ

The Fourier expansion (8) is obtained simply by writing out the definition of Ea,b if
k 6= 2:

EN,k
a,b,c(τ) = βkα

N,k
a,b

+

( ∑
m,n≥1

m≡a mod N

nk−1e
2πi
N

(bn+(c+Nτ)nm) + (−1)k
∑
m,n≥1

m≡−a mod N

nk−1e
2πi
N

(−bn+(c+Nτ)nm)

)

= βkα
N,k
a,b

+

( ∑
m,n≥1

m≡a mod N

nk−1ζbn+cmn
N qmn + (−1)k

∑
m,n≥1

m≡−a mod N

nk−1ζ−bn+cmn
N qmn

)

= βkα
N,k
a,b

+

( ∑
m,n≥1

m≡a mod N

nk−1ζbn+acn
N qmn + (−1)k

∑
m,n≥1

m≡−a mod N

nk−1ζ−bn−acnN qmn
)
.

When k = 2 we have the same expression, with the extra term

−β2
2πi

N2((c+Nτ)− (c+Nτ))
= −β2

2πi

N2(Nτ −Nτ)
= −β2

π

N3 Im(τ)

included. This establishes (8) for any k > 0.

5.2 Expansion in −1
N2τ

Now we will derive an Fourier expansion in terms of 1
N2τ

. For every B =
(
b11 b12
b21 b22

)
∈

Γ, we have
GN,k,(a,b)(Bτ) = (b21τ + b22)kGN,k,(a,b)Bt(τ)

(see [5, Chapter 7]). Recall (13), then

GN,k,(a′,b′)

(
cτ − (c2 + 1)

τ − c

)
= GN,k,(a′,b′)(Aτ) = GN,k,(a,b)(τ)(τ − c)k.

Substituting c+Nτ for τ , we obtain

GN,k,(a,b)(c+Nτ)(Nτ)k = GN,k,(a′,b′)

(
c(c+Nτ)− (c2 + 1)

c+Nτ − c

)
= GN,k,(a′,b′)

(
cNτ − 1

Nτ

)
= GN,k,(a′,b′)

(
c−N 1

N2τ

)
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meaning that

Ea,b,c(τ)(Nτ)k = Ea′,b′,c

(
− 1

N2τ

)
.

Using the first Fourier expansion (8) for Ea′,b′,c, we obtain

EN,k
a,b,c(τ)(Nτ)k = βkα

N,k
a,b

+
∑
m,n≥1

m≡a′ mod N

nk−1ζb
′n+a′cn
N exp

(
− −2πmni

N2τ

)

+ (−1)k
∑
m,n≥1

m≡−a′ mod N

nk−1ζ−b
′n−a′cn

N exp

(
−2πmni

N2τ

)
,

which is precisely (9).

6 Expressing double series as Eisenstein series

More generally, we may consider series of the form

S(τ) =
∑
n,m≥1

nk−1f(n)g(m)qmn,

with f and g both N -periodic and satisfying the parity constraint

f(−a)g(−b) = (−1)kf(a)g(b) for all integers a, b.

One advantage of the Eisenstein series introduced here is that it allows us to repre-
sent S(τ) as a linear combination of EN,k

a,b (τ), up to a linear combination of ‘constants’
γa,b(τ), by using (the inverse of) the finite Fourier transform. Here we define the

inverse finite Fourier transform f̂ of f by

f̂(n) =
1

N

∑
a mod N

ζ−anN f(a).

It is known (and easily checked) that this transform satisfies

f(n) =
∑

a mod N

ζanN f̂(a).

We will use this property to prove the following proposition.

Proposition 1. For any two periodic functions satisfying

f(−a)g(−b) = (−1)kf(a)g(b) for all integers a, b,

13



The q-expansions of S(τ) and the Eisenstein series

1

2

∑
a,b mod N

f̂(b)g(a)EN,k
a,b

coincide. In other words, the identity∑
n,m≥1

nk−1f(n)g(m)qmn =
1

2

∑
a,b mod N

f̂(b)g(a)(EN,k
a,b (τ)− γN,ka,b (τ)) (14)

takes place.

Proof. We can assume without loss of generality that g and f not identically zero.
From this follows that, by the imposed relation, there are n, m such that
g(m), g(−m), f(n), f(−n) 6= 0. Then f(−a) = (−1)k g(−m)

g(m)
f(a) = (−1)k g(m)

g(−m)
f(a),

so f(a) = f(−a) for all integers a or f(a) = −f(−a) for all integers a. By symmetry

the same property also holds for g. By writing out the definition of f̂ we find that

f̂(−a)g(−b) = (−1)kf̂(a)g(b) for all integers a, b.

Now we will use this property to prove the identity.

∑
n,m≥1

f(n)g(m)nk−1qmn =
∑

a mod N

∑
m,n≥1

m≡a mod N

f(n)g(m)nk−1qmn

=
∑

a,b mod N

∑
m,n≥1

m≡a mod N

g(a)f̂(b)ζbnN n
k−1qmn

=
∑

a,b mod N

f̂(b)g(a)
∑
m,n≥1

m≡a mod N

ζbnN n
k−1qmn

=
1

2

∑
a,b mod N

f̂(b)g(a)

×
( ∑

m,n≥1
m≡a mod N

ζbnN n
k−1qmn + (−1)k

∑
m,n≥1

m≡−a mod N

ζ−bnN nk−1qmn
)

=
1

2

∑
a,b mod N

f̂(b)g(a)(EN,k
a,b − γ

N,k
a,b ).

Remark. The proof did not actually use that k is a nonnegative integer. Therefore,
this theorem is valid for general Eisenstein series of integral weight k.
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7 The L-value at 4 for conductor 32

In [9], the L-values at 2 and 3 of an elliptic curve of conductor 32 are explicitly
expressed as periods, and there is a general outline on how to derive such results.
We will use this to compute a representation of the L-value at 4 of the elliptic curve
as a period.

Recall that for a conductor 32 elliptic curve E, the L-series is known to coincide
with that for the cusp form f(τ) = η2

4η
2
8. This will be shown to be a product of

Eisenstein series.
We have the following (Lambert series) expansion:

η4
8

η2
4

=
∑
m≥1

(
−4

m

)
qm

1− q2m
=
∑
m,n≥1

a(m)b(n)qmn,

where a(m) :=
(−4
m

)
and b(n) := n mod 2 are as in [9]. This expansion can be

obtained using Dirichlet convolution; in this case

a(m) =
∑
n|m
m
n

odd

c(n)µ
(m
n

)
,

where c(n) is the n-th term in the expansion on the left and µ is the Möbius function.
Combining this with the identity

η2
4η

2
8 =

η4
8

η2
4

η4
4

η2
8

and using the modular involution (2) we obtain

f(it) =
1

2t

∑
m1,n1≥1

a(m1)b(n1)e−2πm1n1t
∑

m2,n2≥1

a(m2)b(n2)e−2πm2n2/(32t).

We apply this to the L-value at 4:

L(E, 4) = L(f, 4) =
1

6

∫ 1

0

f log3 q
dq

q
= −(2π)4

6

∫ ∞
0

f(it)t3 dt

= −(2π)4

2 · 6
∑

m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)

×
∫ ∞

0

exp

(
− 2π

(
m1n1t+

m2n2

32t

))
t2 dt.
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Performing the change of variable t = n2

n1
u yields

L(E, 4) = −4

3
π4

∑
m1,n1,m2,n2≥1

a(m1)b(n1)b(m2)a(n2)
n3

2

n3
1

×
∫ ∞

0

exp

(
− 2π

(
m1n2u+

m2n1

32u

))
u2 du

= −4

3
π4

∫ ∞
0

∑
m1,n2≥1

n3
2a(m1)a(n2) exp(−2πm1n2u)

×
∑

m2,n1≥1

b(m2)b(n1)

n3
1

exp

(
−2πm2n1

32u

)
u2 du.

Now we perform another change of variable v = 1
32u

, then

u2 du =
1

(32v)2
×− dv

32v2
.

We now have

L(E, 4) = − 4π4

3 · 323

∫ ∞
0

∑
m1,n2≥1

n3
2a(m1)a(n2) exp

(
−2πm1n2

32v

)
×

∑
m2,n1≥1

b(m2)b(n1)

n3
1

exp(−2πm2n1v)
dv

v4

= − 4π4

3 · 323

∫ ∞
0

F1(i/32v)(δ−3F2)(iv)
dv

v4
,

where

F1(τ) :=
∑
n,m≥1

(
−4

mn

)
n3qmn

and

(δ−3F2)(τ) =
∑
m,n≥1

b(m)b(n)

n3
qmn

=
∑
n≥1
n odd

qn

n3(1− q2n)

We will now proceed by expressing F1(i/32τ) as an eta quotient and (δ−3F2)(τ) as a
product of an eta quotient and a hypergeometric series in terms of an eta quotient.
By PARI computations, we obtain

F1(τ) =
η16

4

η4
2η

4
8

− 32
η4

2η
12
8

η8
4

,

16



thus

v−4F1(τ)|τ=i/(32v) =

(
212 η16

8

η4
4η

4
16

− 32 · 28η
12
4 η

4
16

η8
8

)∣∣∣∣
τ=iv

= 212

(
η16

8

η4
4η

4
16

− 2
η12

4 η
4
16

η8
8

)∣∣∣∣
τ=iv

= −212F1(2τ)|τ=iv.

If we define x̃(τ) = 4η12
4 /η

4
2 and then also the modular function

X(τ) = x̃(τ) · (1 + x̃(τ)2)1/2 =
4η12

4

η12
2

,

then we have, by Duke’s formula [1, eq. (2·6)], that

4(δ−3F2)(τ) =

X(τ) · 4F3

(
1, 1, 1, 1

3
2
, 3

2
, 3

2

∣∣∣∣ −4X(τ)2

)
3F2

(
1
2
, 1

2
, 1

2

1, 1

∣∣∣∣ −4X(τ)2

)
=
X(τ) ·H(−4X(τ)2)

Λ(τ)
.

Clausen’s formula [6, §2.5 eq.(2.5.7)] reads

Λ(τ) = 3F2

(
1
2
, 1

2
, 1

2

1, 1

∣∣∣∣ −4X(τ)2

)
= 2F1

(
1
2
, 1

2

1

∣∣∣∣ −x̃(τ)2

)2

=
η8

2

η4
4

.

Now, using this, we can write

L(E, 4) =
1

6
π4

∫ ∞
0

F1(2τ)(δ−3F2)(τ)|τ=iv dv

=
1

6
π4

∫ ∞
0

1

4

(
η16

8

η4
4η

4
16

− 32
η4

4η
12
16

η8
8

)
η16

4

η20
2

H(−4X(τ)2)|τ=iv dv.

If x =
4η42η

8
8

η124
, then

dx =
4η12

2 η
8
8

η16
4

dq

q
=

4η12
2 η

8
8

η16
4

2πi dτ.

So by a change of variable, the differential form 2πiF1(2iv)(δ−3F2)(iv) dv transforms
into

−1

4

(
η16

8

η4
4η

4
16

− 32
η4

4η
12
16

η8
8

)
η16

4

η20
2

× η16
4

η12
2 η

8
8

H(−4X2) dx.

17



This is a rational function in
(
η4
η2

)4
,
(
η8
η2

)4
and

(
η16
η2

)4
multiplied by H(−4X2) dx.

Explicitly, we have the following:

2πiF1(2τ)(δ−3F2)(τ) dτ =
1

4

(
η16

8

η4
4η

4
16

− 32
η4

4η
12
16

η8
8

)
η32

4

η32
2

1

η8
8

×H(−4X2) dx

=
1

4

((
η8

η2

)8(
η4

η2

)−4(
η16

η2

)−4

− 32

(
η8

η2

)−16(
η4

η2

)4(
η16

η2

)12)
×
(
η4

η2

)32

×H(−4X2) dx

As in [9], (
η8

η2

)4

=
x̃

4
=

x

4
√

1− x2
,

and we also have (
η4

η2

)4

=

(
x

4(1− x2)

)1/3

and (
η16

η2

)4

= (1−
√

1− x2)

(
x

211(1− x2)7/4

)1/3

.

Using these results we obtain

−2πF1(2iv)(δ−3F2)(iv) dv =
x4 − 2(1−

√
1− x2)4

128(1− x2)11/4(1−
√

1− x2)
×H(−4X2) dx.

If we express the algebraic relation in terms of y =
√

1− x2, we get

−2πF1(2iv)(δ−3F2)(iv) dv = − (1− y2)2 − 2(1− y)4

128y9/2(1− y)
√

1− y2
×H(−4X2) dy

=
(1− 6y + y2)

√
1− y

128
√
y9(1 + y)

H(−4X2)

Since

X =
x

1− x2
=

√
1− y2

y2

and x(τ) ranges from 0 to 1 when τ goes from i∞ to 0, we have

L(E, 4) =
π3

1536

∫ 1

0

x4 − 2(1−
√

1− x2)4

(1− x2)11/4(1−
√

1− x2)
×H

(
− 4

x4

(1− x2)2

)
dx

and

L(E, 4) =
π3

1536

∫ 1

0

(1− 6y + y2)
√

1− y√
y9(1 + y)

H(−4X2) dy

=
π3

1536

∫ 1

0

(1− 6y + y2)
√

1− y√
y(1 + y)

∫∫∫
[0,1]3

dy dy1 dy2 dy3

y4 + 4(1− y2)(1− y2
1)(1− y2

2)(1− y2
3)
.
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The following theorem summarises our findings in this section.

Theorem 2. The L-value of an elliptic curve E of conductor 32 at 4 possesses the
following expression as a period:

L(E, 4) =
π3

1536

∫
· · ·
∫

[0,1]4

(1− 6y + y2)
√

1− y dy dy1 dy2 dy3√
y(1 + y)

(
y4 + 4(1− y2)(1− y2

1)(1− y2
2)(1− y2

3)
) .

8 General L-values for conductor 32

We will find an expression for L(E, k) for both even and odd k > 1 of the form

Cπk
∫ ∞

0

F1(2iv)(δ−k+1F2)(iv) dv,

where C is an explicit rational constant and F1 and F2 are finite sums of Eisenstein
series. In order to carry out this computation, we define the partial Fourier transform
Ẽd,b = ẼN,k

d,b of an Eisenstein series:

ẼN,k
d,b =

∑
a mod N

ζdaN E
N,k
a,b .

Note that we also have

EN,k
a,b =

1

N

∑
d mod N

ζ−daN ẼN,k
d,b .

These functions have a simple series representation, which will help expressing series
in terms of the Eisenstein series.

Proposition 2. For any N , k, d and b the following holds:

ẼN,k
d,b =

∑
a mod N

ζdaN γa,b +
∑
n,m≥1

ζdm+bn
N nk−1qmn + (−1)k

∑
n,m≥1

ζ−dm−bnN nk−1qmn (15)

and for k > 1, the first sum vanishes if d 6≡ 0 mod N and is otherwise equal to

(N − 1)γ∗,b −
δk,2 · β2 · 2πi
N3(τ − τ)

= (N − 1)βk
∑′

m∈Z
m≡b

m−k − δk,2 · β2 · 2πi
N2(τ − τ)

.

Note that for this reason the first sum vanishes for odd k > 1.

Using (14) allows us to write S in the following way:

S(τ) =
1

2

∑
a,b mod N

f̃(a)g̃(b)Ẽa,b(τ).
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8.1 The case of even k

We have

L(E, k) = − (2π)k

(k − 1)!

∫ ∞
0

f(it)tk−1 dt

= − (2π)k

2(k − 1)!

∑
m1,m2,n1,n2≥1

a(m1)b(n1)b(m2)a(n2)

×
∫ ∞

0

exp

(
− 2π

(
m1n1t+

m2n2

32t

))
tk−2 dt,

the change of variables t = n2

n1
u then gives

L(E, k) = − (2π)k

2(k − 1)!

∫ ∞
0

∑
m1,n2≥1

nk−1
2 a(m1)a(n2) exp(−2πm1n2u)

×
∑

m2,n1≥1

b(m2)b(n1)

nk−1
1

exp

(
−2πm2n1

32u

)
uk−2 du

Now take v = 1
32u

such that uk−2 du = − 1
32k−1

dv
vm

:

L(E, k) = − (2π)k

2 · 32k−1(k − 1)!

∑
m1,n2≥1

nk−1
2 a(m1)a(n2) exp

(
−2πm1n2

32v

)
×

∑
m2,n1≥1

b(m2)b(n1)

nk−1
1

exp(−2πm2n1v)
dv

vk
.

Define

F1(τ) :=
∑
m,n≥1

a(m)a(n)nk−1qmn =
∑
m,n≥1

(
−4

mn

)
nk−1qmn,

F2(τ) :=
∑
m,n≥1

b(m)b(n)nk−1qmn =
∑
m,n≥1
m,n odd

nk−1qmn,

so that

L(E, k) = − (2π)k

2 · 32k−1(k − 1)!

∫ ∞
0

F1

(
i

32v

)
δ−k+1(F2)(iv)

dv

vk
.

It remains to write F1 and F2 in terms of Eisenstein series and to apply a modular
transformation to F1. As

(−4
m

)
= im−i−m

2i
, we have(

−4

mn

)
=

1

4
(im−n + i−m+n − im+n − i−m−n),
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so

F1 =
1

4
Ẽ4,k

1,−1 −
1

4
Ẽ4,k

1,1

=
i

2
(E4,k

1,−1 − E
4,k
1,1 ),

and as
(−4
m

)2
= m mod 2, we have

b(n)b(m) =
(−1)n+m + (−1)−n−m − (−1)n − (−1)−n − (−1)m − (−1)−m + 2

8
,

implying

F2 =
1

8
(Ẽ2,k

1,1 − Ẽ
2,k
1,0 − Ẽ

2,k
0,1 + Ẽ2,k

0,0 )

=
1

4
(−E2,k

1,1 + E2,k
1,0 ).

By (11) we have

F1

(
i

32v

)
=
i

2

(
E4,k

1,−1

(
−1

42(2iv)

)
− E4,k

1,1

(
−1

42(2iv)

))
=
i

2
(4 · 2iv)k(−E4,k

1,−1(2iv) + E4,k
1,1 (2iv))

= −(8iv)kF1(2iv).

Thus we obtain

L(E, k) =
−(2π)k

2 · 32k−1(k − 1)!

∫ ∞
0

−(8iv)kF1(2iv)(δ−k+1F2)(iv)
dv

vk

=
16(πi)k

2k(k − 1)!

∫ ∞
0

F1(2iv)(δ−k+1F2)(iv) dv.

8.2 The case of odd k

We have

L(E, k) = − (2π)k

(k − 1)!

∫ ∞
0

f(it)tk−1 dt

= − (2π)k

2(k − 1)!

∑
m1,m2,n1,n2≥1

a(n1)b(m1)b(m2)a(n2)

×
∫ ∞

0

exp

(
− 2π

(
m1n1t+

m2n2

32t

))
tk−2 dt,
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the change of variables t = n2

n1
u then gives

L(E, k) = − (2π)k

2(k − 1)!

∫ ∞
0

∑
m1,n2≥1

nk−1
2 b(m1)a(n2) exp(−2πm1n2u)

×
∑

m2,n1≥1

b(m2)a(n1)

nk−1
1

exp

(
−2πm2n1

32u

)
uk−2 du.

Now take v = 1
32u

such that uk−2 du = − 1
32k−1

dv
vm

:

L(E, k) = − (2π)k

2 · 32k−1(k − 1)!

∑
m1,n2≥1

nk−1
2 b(m1)a(n2) exp

(
−2πm1n2

32v

)
×

∑
m2,n1≥1

b(m2)a(n1)

nk−1
1

exp(−2πm2n1v)
dv

vk
.

Define

F̂1(τ) :=
∑
m,n≥1

b(m)a(n)nk−1qmn =
∑
m,n≥1
m odd

(
−4

n

)
nk−1qmn,

F2(τ) :=
∑
m,n≥1

b(m)a(n)mk−1qmn =
∑
m,n≥1
m odd

(
−4

n

)
mk−1qmn,

so that

L(E, k) = − (2π)k

2 · 32k−1(k − 1)!

∫ ∞
0

F1

(
i

32v

)
δ−k+1(F2)(iv)

dv

vk
.

Now it remains to write F1 and F2 in terms of Eisenstein series and to apply a
modular transformation to F1. Since

b(m)a(n) =
in − i−n

2i
· 1− i2m

2
=
in − i−n − in+2m + i−n−2m

4i
,

F̂1 =
Ẽ4,k

0,1 − Ẽ
4,k
2,1

4i

=
E1,1 + E3,1

2i

and

F2 =
Ẽ4,k

1,0 − Ẽ
4,k
1,2

4i

=
1

4i

∑
a mod 4

i−a(E4,k
a,2 − E

4,k
a,0)
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By (11) we have

F̂1

(
i

32v

)
=
i

2
(E4,k

1,1

(
−1

42(2iv)

)
− E4,k

3,1

(
−1

42(2iv)

)
)

=
i

2
(4 · 2iv)k(−E4,k

1,−1(2iv) + E4,k
1,−3(2iv))

= −(8iv)kF1(2iv),

where
F1 = −E4,k

1,−1 + E4,k
1,−3.

Thus, we obtain

L(E, k) =
−(2π)k

2 · 32k−1(k − 1)!

∫ ∞
0

−(8iv)kF1(2iv)(δ−k+1F2)(iv)
dv

vk

=
16(πi)k

2k(k − 1)!

∫ ∞
0

F1(2iv)(δ−k+1F2)(iv) dv.

We summarise our findings in this section as follows.

Theorem 3. The L-value of an elliptic curve E of conductor 32 at k ≥ 2 equals

L(E, k) =
16(πi)k

2k(k − 1)!

∫ ∞
0

F1(2iv)(δ−k+1F2)(iv) dv,

where F1 and F2 are Eisenstein series of weight k. Explicitly, for even k:

F1 =
i

2
(E4,k

1,−1 − E
4,k
1,1 )

F2 =
1

4
(E2,k

1,0 − E
2,k
1,1 ),

and for odd k:
F1 = E4,k

1,−3 − E
4,k
1,−1

F2 =
i

4
(Ẽ4,k

1,2 − Ẽ
4,k
1,0 ) =

i

4

∑
a mod 4

i−a(E4,k
a,0 − E

4,k
a,2).
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