M-points of bounded height

Boaz Moerman

Utrecht University

30 June 2025

Introduction

In this talk we will study the density of many special sets of rational points on algebraic varieties, using the framework of M-points. On the projective plane, examples of sets of M-points are given by

the sets of all (x : y : z) such that

- x, y, z squarefree,
- x, y, z squareful,
- xyz squareful,
- $|xyz^2|$ a perfect cube,

and many more.

In this talk, we will introduce M-points and study the number of M-points of bounded height on split toric varieties, for which we will derive a precise asymptotic.

For instance, my results will imply that the number of triples $(x:y:z)\in\mathbb{P}^2(\mathbb{Z})$ such that xyz is squareful and $\max(|x|,|y|,|z|)\leq B$ is asymptotic to

$$cB^{3/2}(\log B)^3$$

as $B \to \infty$.

Multiplicities

Let X be a proper variety over \mathbb{Q} (with a fixed model over \mathbb{Z}), and let D and P be a prime divisor and a point on X.

For every prime p we have an intersection multiplicity $n_p(D, P)$, which is the largest integer n such that P reduces to D modulo p^n (or ∞ if such an integer does not exist).

Thus for given divisors D_1, \ldots, D_n , we obtain a map

$$\operatorname{mult}_p \colon X(\mathbb{Q}) \to (\mathbb{N} \cup \{\infty\})^n$$
,

given by the intersection multiplicities with the divisors.

M-points

Let
$$\mathfrak{M} \subset \mathbb{N}^n$$
 be a set containing the origin and write $M = ((D_1, \ldots, D_n), \mathfrak{M})$. Then the set of M -points on (X, M) is $(X, M)(\mathbb{Z}) = \{P \in X(\mathbb{Q}) \mid \operatorname{mult}_p(P) \in \mathfrak{M} \text{ for all primes } p\}.$

M-points on split toric varieties

Now let X be a smooth proper split toric variety, and let D_1, \ldots, D_n be the torus invariant prime divisors, such as \mathbb{P}^{n-1} together with the coordinate hyperplanes. A point on X can be described using Cox coordinates

$$P=(a_1:\cdots:a_n),$$

generalizing homogeneous coordinates on projective space. We have

$$\mathsf{mult}_p(a_1:\cdots:a_n)=(v_p(a_1),\ldots,v_p(a_n)),$$

if the coordinates are integral and suitably coprime.

Darmon points and Campana points

We now give examples of M-points in these coordinates. Let $m_1, \ldots, m_n \in \mathbb{N} - \{0\}$.

- $\mathfrak{M} = \{(w_1, \dots, w_n) \colon m_i | w_i\}$ gives the **Darmon points** $(X, M)(\mathbb{Z}) = \{(\pm a_1^{m_1} : \dots : \pm a_n^{m_n})\}.$
- $\mathfrak{M} = \{(w_1, \dots, w_n) \colon w_i = 0 \text{ or } w_i \ge m_i\}$ gives the **Campana** points $(X, M)(\mathbb{Z}) = \{(a_1 : \dots : a_n) \colon a_i \ m_i\text{-full}\}.$

(Here we recall an integer is m-ful if every prime dividing it appears with multiplicity > m.)

• $\mathfrak{M} = \{(w_1, \dots : w_n) : \sum_{i=1}^n \frac{w_i}{m_i} \ge 1\} \cup \{(0, \dots, 0\} \text{ gives the weak Campana points. If } m_1, \dots, m_n = m, \text{ then}$

$$(X,M)(\mathbb{Z})=\{(a_1:\cdots:a_n):\prod_{i=1}^n a_i \text{ m-full}\}.$$

More examples of M-points

There are many more examples of M-points, such as

- $\mathfrak{M} = \{0,1\}^n$ gives "squarefree" points $(X,M)(\mathbb{Z}) = \{(a_1:\cdots:a_n): a_i \text{ squarefree}\}.$
- $\mathfrak{M} = \{\mathbf{0}, \mathbf{e}_1, \dots, \mathbf{e}_n\}$ gives $(X, M)(\mathbb{Z}) = \{(a_1 : \dots : a_n) : \prod_{i=1}^n a_i \text{ squarefree}\}.$

Heights

How many M-points are there? Consider an embedding $X \hookrightarrow \mathbb{P}^d$ corresponding to a line bundle L, and let H_L be the height on X obtained by restricting the Weil height

$$H(x_1:\cdots:x_d)=\max(|x_1|,\ldots,|x_d|)$$

to $X(\mathbb{Q})$.

Let $N_{(X,M),L}(B)$ be the number of M-points on (X,M) with height H_L at most B. For this quantity, we proved a generalization of Manin's conjecture for toric varieties.

Main theorem

We call a pair (X, M) proper if \mathfrak{M} contains $d_1\mathbf{e}_1, \ldots, d_n\mathbf{e}_n$ for some positive integers d_1, \ldots, d_n (satisfied for all examples).

Theorem (B.M.,2025)

Let X be a smooth split toric variety and let D_1, \ldots, D_n be torus invariant prime divisors. For every proper pair (X, M), there are explicit constants a, b > 0 such that

$$N_{(X,M),L}(B) = B^{a}(Q(\log B) + o(B^{-\theta})),$$

for some $\theta > 0$ and some polynomial Q of degree b-1. In many cases, the leading coefficient c of Q is determined explicitly.

The constants a, b and c admit geometric interpretations analogous to the invariants in Manin's conjecture.

Earlier results

The only previously known cases were for Campana points (Pieropan-Schindler '24), and Darmon points (Shute-Streeter '24). Furthermore, both only treated the log-anticanonical height corresponding to $L = \sum_{i=1}^{n} \frac{1}{m_i} D_i$, and our result improves on their error term.

Furthermore, our theorem agrees with the prediction made for Campana points by Pieropan, Smeets, Tanimoto and Várilly-Alvarado.

Examples

If $X=\mathbb{P}^{n-1}$ and we consider weak Campana points for $m_1,\ldots,m_n=m$, then this gives that the number of primitive n-tuples (a_1,\ldots,a_n) with $\prod_{i=1}^n a_i$ m-ful and $\max(|a_1|,\ldots,|a_n|) \leq B$ is asymptotic to $B^{n/m}Q(\log B)$, where Q has degree $\binom{m+n-1}{n-1}-\binom{m-1}{n-1}-n$. If n=3, m=2, then this becomes $B^{3/2}Q(\log B)$, where Q is a cubic polynomial with leading coefficient

$$\prod_{p \text{ prime}} (1 - p^{-1})^6 \left(\frac{1 - p^{-3/2}}{(1 - p^{-1/2})^3} - 3p^{-1/2} \right) \approx 0.862.$$

Picard group of a pair

Let Γ_M be the (finite) set of minimal elements of \mathfrak{M} in the partial order on \mathbb{N}^n . We define the groups of torus invariant divisors on X and (X, M) to be

$$\mathsf{Div}_{\mathcal{T}}(X) = \bigoplus_{i=1}^n \mathbb{Z}[D_i]$$

and

$$\mathsf{Div}_{\mathcal{T}}(X,M) = \bigoplus_{\mathbf{m} \in \Gamma_M} \mathbb{Z}[\tilde{D}_{\mathbf{m}}],$$

and we consider the pullback map

$$\mathsf{pr}^* \colon \operatorname{\mathsf{Div}}_{\mathcal{T}}(X) o \operatorname{\mathsf{Div}}_{\mathcal{T}}(X,M),$$
 $D_i \mapsto \sum_{\mathbf{m} \in \Gamma_M} m_i \tilde{D}_{\mathbf{m}}.$

The effective cone

Define the *Picard group* Pic(X, M) to be the quotient of $Div_T(X, M)$ by the image of principal divisors in $Div_T(X)$, and let

$$\mathsf{Eff}(X,M) = \left\{ \sum_{\mathbf{m} \in \Gamma_M} \mathsf{a}_{\mathbf{m}} \tilde{D}_{\mathbf{m}} \colon \; \mathsf{a}_{\mathbf{m}} \geq 0 \right\} \subset \mathsf{Pic}(X,M) \otimes \mathbb{R}$$

be the effective cone of (X, M). Let $K_{(X,M)} = -\sum_{\mathbf{m} \in \Gamma_M} \tilde{D}_{\mathbf{m}}$ be the canonical divisor of (X, M). Now

$$a = \min\{t \in \mathbb{R}: t \operatorname{pr}^* L + K_{(X,M)} \in \operatorname{Eff}(X,M)\}$$

and b is the codimension of the minimal face of Eff(X, M) containing $a \operatorname{pr}^* L + K_{(X,M)}$.

Counting Darmon points and (weak) Campana points

If (X, M) is a pair corresponding to (weak) Campana points or Darmon points, then

$$a = \min \left\{ t \in \mathbb{R} \colon tL - \sum_{i=1}^n rac{1}{m_i} D_i \in \mathsf{Eff}(X)
ight\}.$$

For Darmon and Campana points b is the codimension of the minimal face of $\mathrm{Eff}(X)$ containing $A=aL-\sum_{i=1}^n\frac{1}{m_i}D_i$. For weak Campana points, b is equal to this codimension plus

$$\#\left\{\mathbf{w}\in\mathbb{N}^n\colon \sum_{i=1}^n\frac{w_i}{m_i}=1,\quad \bigcap_{w_i>0}D_i\neq\emptyset,\quad w_i=0 \text{ if } D_i\subset \mathsf{Support}(\mathsf{A})\right\}$$

Thank you for listening!

References:

- B.Moerman. Generalized Campana points of bounded height.
 In preparation
- B.Moerman. Generalized Campana points of bounded height on toric varieties. In preparation
- M. Pieropan, A. Smeets, S. Tanimoto and A. Várilly-Alvarado.
 Campana points of bounded height on vector group compactifications. *Proc. Lond. Math. Soc.* (3), 2021
- M. Pieropan and D. Schindler. Hyperbola method on toric varieties. J. Éc. polytech. Math., 2024.
- A. Schute and S. Streeter. Semi-integral points of bounded height on toric varieties. ArXiv, 2024.