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Introduction

A central theme in number theory and geometry are local-global
principles:

When can local points be lifted to global points?

For example, when can a solution of an equation over Z/nZ be
lifted to a solution in Z?
The archtypical result in this topic is the Chinese remainder
theorem.
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Chinese remainder theorem

The Chinese remainder theorem is equivalent to the statement that
the map

Z →
k∏

i=1

Z/pni Z

is surjective for all n ∈ N and distinct primes pi .

Using the p-adics,
this can be restated more elegantly:

Chinese remainder theorem

The diagonal embedding

Z ↪→
∏

p prime

Zp

has dense image.
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Geometric analogue

This has a natural geometric counterpart:

Chinese remainder theorem

The diagonal embedding

C[t] ↪→
∏
p∈C

C[[t − p]]

has dense image.

Which means that for p1, . . . , pn ∈ C we can find a polynomial f
having any desired values and derivatives at those points. (Include
image.)
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Extensions

These results have been extended in two ways:

By considering number fields and more general function fields.
(Rather than Q and C(t).)
Use different varieties than the affine line.

These extensions lead to the notions of weak and strong
approximation, and have been extensively studied over the last
century. In this talk we will extend these notions by imposing
further arithmetic conditions (squarefreeness, coprimality,
squareful, etc) on the points. This leads to the new notion of
M-approximation.
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Extensions

In this talk I will characterize when M-approximation holds on
(split) toric varieties, such as projective space. This will allow us to
tackle questions such as:
Are the squarefree integers dense in the product of the “squarefree
p-adics”?
As well as similar questions related to valuations.
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Preliminaries

In this talk, we work over a fixed PF field K . Such a field is either

a number field, or

a function field K = k(C ) of a regular curve C over a field k .
(No conditions on k .)

On K a finite place v is

a prime ideal in OK if K is a number field, or

a closed point in C if K is a function field.

If K is a number field, then an infinite place v is an embedding
v : K → C, up to conjugation, while a function field has no infinite
places. We denote the set of places of K by ΩK . Throughout the
talk S will always be a nonempty finite collection of places
including the infinite places.
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Preliminaries

For any place v , let Kv be the completion of K at v . If v is finite,
we let Ov be the ring of elements with nonnegative valuation.
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Preliminaries

Let X be a proper (e.g. projective) variety over K . An integral
model of X is a proper scheme X over OK or C such that
XK = X . Such a model can be found by ”clearing the
denominators in the equations defining X”. For example, Pn

Z is an
integral model of Pn

Q.
As X is proper, any K -point lifts to an unique OS -point. Similarly,
Kv -points lift to Ov -points for every finite place v . We will use this
to define special kinds of rational points, called M-points.
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Local intersection multiplicity

Let D be a prime divisor on X with closure D in X . Let v be a
finite place and let P ∈ X (Kv ).
The local intersection multiplicity nv (D,P) of D and P at v is
defined as the maximal n ∈ N := N ∪ {∞} such that P reduces to
D modulo πn

v , where πv is a uniformizer of Ov (such as p in Zp).

If {f = 0} is a local equation of D around P, then it follows that
nv (D,P) = v(f (P)) is the valuation of the value of f at P.
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Geometric interpretation

In the function field setting, this agrees with the local intersection
multiplicity between curves and divisors. (Include picture
intersections here.)
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M-points

Let D1, . . . ,Dn be divisors on X and let M ⊂ Nn
be a subset

containing (0, . . . , 0). Set M = ((D1, . . . ,Dn),M). For a finite
place v let

multv : X (Kv ) → Nn

be the map given by

P 7→ (nv (D1,P), . . . , nv (Dn,P)).

Then a point P ∈ X (Kv ) an v-adic M-point if multv (P) ∈ M.
Similarly, an point P ∈ X (K ) is an M-point over OS if
multv (P) ∈ M for all v ∈ ΩK \ S .
We denote the set of v -adic M-points by (X ,M)(Ov ) and the set
of M-points over OS by (X ,M)(OS).
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Example: integral points

If M = {0}k × Nn−k
, then

(X ,M)(OS) = U(OS)

are the OS -integral points on the open
U = X \ (D1 ∪ · · · ∪ Dk) ⊂ X .
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Example: M-points on projective space

If we take X = Pn−1
K and the divisors to be the coordinate

hyperplanes, then for any finite place v and a point
P = (x1 : · · · : xn) ∈ Pn−1(Kv ), the multiplicity map is simply
multv (P) = (v(x1), . . . , v(xn)), if the xi are taken to be coprime.

Using this description, we can explicitly describe the M-points on
projective space, for any set M ⊂ Nn.
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Examples on projective space I

For example,
1 if M = {0}n, then

(Pn−1,M)(OS) = {(x1 : · · · : xn)|xi ∈ O×
S } ∼= (O×

S )
n−1

are the OS -integral points on the torus Gn−1
m ⊂ Pn−1.

2 if M = Nn−1 × {0}, then

(Pn−1,M)(OS) = {(x1 : · · · : xn)|xn ∈ O×
S } = An−1(OS).

3 if M consists of the elements in Nn with at most a single
coordinate nonzero, then

(Pn−1,M)(Z) = {(x1 : · · · : xn)|xi ∈ Z, gcd(xi , xj) = 1∀i ̸= j},

as the points do not reduce to the intersection of two divisors
modulo any prime.
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Special cases

We introduce some names for the M-points for special choices of
M.

If M = {0, 1}n, we call the M points on (X ,M) squarefree
points. These can be viewed the points which only intersect the
divisors transversally, as the intersection multiplicity at each place
is at most 1.

Let m1, . . . ,mn be positive integers.

1 If M = m1N× · · · ×mnN, then the M-points on (X ,M) are
called Darmon points (for the given weights m1, . . . ,mn).

2 If M = N≥m1 × · · · ×N≥mn , then the M points on (X ,M) are
called Campana points (for the given weights m1, . . . ,mn).
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Examples on projective space II

Again, let X = Pn−1 and consider the points over Z.
1 The squarefree points are

(Pn−1,M)(Z) = {(x1 : · · · : xn) | xi squarefree}.

2 The Darmon points are

(Pn−1,M)(Z) = {(±xm1
1 : · · · : ±xmn

n )}.

3 The Campana points are

(Pn−1,M)(Z) = {(x1 : · · · : xn) | xi is mi -full},
where we recall that an integer x is m-full if for every prime p
dividing x , the power pm also divides x .

Similar descriptions exist for other rings (with trivial class group),
by replacing the role of ± with the units in the ring.
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For simplicity, we now assume every element in M has all
coordinates finite. We also set U = X \ (D1 ∪ · · · ∪ Dn).
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Adelic M-points

Let us now return to the problem considered at the start. In order
to generalize the Chinese remainder theorem, we need an analogue
of

∏
p prime Zp.

Definition: integral adelic M-points

Let T ⊂ S , the space of integral adelic M-points over S prime
to T to be

(X ,M)(AT
OS

) :=
∏

v∈ΩK\S

(X ,M)(Ov )×
∏

v∈S\T

U(Kv ).

Using this language, we see that (P1,M)(AT
Z ) =

∏
p prime Zp,

where M = ((0 : 1), {0}) and T = {∞} consists of the infinite
place.
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Adelic M-points

This space depends on the choice of S and the integral model
however.

If S ⊂ S ′, then the adelic M-points over S embed into
the points over S ′ as an open subspace. Using this we find a more
intrinsic notion.

Definition: adelic M-points

The space of adelic M-points prime to T is

(X ,M)(AT
K ) =

⋃
S⊂ΩK finite

(X ,M)(AT
OS

).

This space is independent of the choice of the integral model X
and contains U(K ) as a subset.
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M-approximation

Now we can finally define M-approximation.

Definition: M-approximation

Let T ⊂ ΩK be a finite set of places. The pair (X ,M) satisfies
M-approximation off T if the diagonal embedding

U(K ) ↪→ (X ,M)(AT
K )

has dense image.

This can be rephrased as follows: given a finite set of places S
containing T and a point Pv ∈ U(Kv ) for all v ∈ S \ T , then there
exist points P ∈ (X ,M)(OS) which approximate all Pv arbitrarily
well.
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Special cases

If n = 0, so no conditions are imposed, then (X ,M)(AT
K ) = X (AT

K )
are the usual adeles on X and M-approximation is the same as
weak approximation off T .

Similarly, M = {0}n, then
(X ,M)(AT

K ) = U(AT
K ) and M-approximation off T is the same as

strong approximation off T for U.
If (X ,M) is the pair for Campana points, then M-approximation is
the same as weak Campana approximation as considered by
Nakahara and Streeter (2024).
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Intermezzo: split toric varieties

All statements about projective space thus far naturally extend to
(split) toric varieties, which are varieties X containing a torus Gd

m

as a dense open subspace, such that the action of the torus on
itself extends to X . For the remainder of the talk, X will be a
smooth toric variety.

Such varieties have homogeneous coordinates similar to projective
space, but with a different multiplicative scaling.
A good family of examples are Hirzebruch surfaces
Hr = Proj(OP1(r)⊕OP1). Points on such surfaces are described
by a tuple (x : y : z : w) satisfying

(x : y : z : w) = (λx : µy : λz : λrµw),

for all units µ, λ.
In particular, H0 = P1 × P1 and H1 = Bl(0:0:1) P2.
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Divisors and rays

Using the coordinates on a toric variety we choose Di := {Xi = 0}
to be the vanishing locus of the i-th coordinate. (This way, the
D1, . . . ,Dn are exactly the torus invariant prime divisors.)

A toric
variety corresponds to a combinatorial object called a fan, and this
associates to every Di the ray generator: a vector ui ∈ Zd , where d
is the dimension of X .
For example, for Pn−1, these are
u1 = e1, . . . , un−1 = en−1, un = −

∑n
i=1 ei . (Add picture)

For Hr , these are
u1 = (−1, r), u2 = (0, 1), u3 = (1, 0), u4 = (0,−1).
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The lattice NM

Consider the surjective linear map

ϕ : Nn → Zd

defined by ei 7→ ui . The image of M ⊂ Nn in Zd generates a
monoid N+

M and a lattice NM by considering (nonnegative) linear
combinations.

These two invariants control much of the arithmetic of (X ,M) and
Zd/NM can be viewed as some kind of fundamental group.
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M-approximation for toric varieties

Theorem (B. Moerman), 2024

Let X be a smooth toric variety over a PF field K with D1, . . . ,Dn

the torus invariant prime divisors. Let T be a nonempty finite set
of places.

Then

1 (X ,M) satisfies M-approximation if and only if N+
M = Zd ,

2 (X ,M) satisfies M-approximation off T if and only if
|Zd/NM | ∈ ρ(K ).

Here ρ(K ) = {1} for global fields and ”most” other fields. On the
other hand ρ(K ) = N \ char(K )N if K is a function field of a curve
over an algebraically closed field.
(ρ(K ) is described in general in my preprint.)
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Consequences: integral points

We summarize a variety of consequences.

Corollary

A toric variety U over a number field satisfies strong approximation
off T if and only if it is simply connected, and it satisfies strong
approximation iff additionally O(U) = K .

While this was already mostly known by work of Cao, Xu (2018)
and Wei (2019), the proof is different.
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Consequences: Campana points

Corollary

The squarefree points and the Campana points on a smooth toric
variety both satisfy M-approximation over any PF field and any
weights m1, . . . ,mn.

The only case previously known here is by Nakahara-Streeter
(2024), who proved this for Campana points on projective space
over a number field.

Proof.

Since ϕ is surjective, it follows that N+
M = NM . Since both miui

and (mi + 1)ui lie in the image for all i , N+
M = Zd .
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Consequences: Darmon points

Corollary

The Darmon points on a smooth toric variety over a number field
satisfy M-approximation if and only if there exist no finite covers
Y → X of integral varieties only ramified over D1, . . . ,Dn with
ramification indices ri |mi .

In particular M-approximation is
satisfied if gcd(mi ,mj) = 1 for all i ̸= j and this is sharp for Pn.

The only case previously known were for curves, by work of
Christensen (2020) and Santens (2023).

Boaz Moerman M-points and adelic approximation on toric varieties



Introduction
M-points

M-approximation
M-approximation on toric varieties

Consequences: Darmon points

Corollary

The Darmon points on a smooth toric variety over a number field
satisfy M-approximation if and only if there exist no finite covers
Y → X of integral varieties only ramified over D1, . . . ,Dn with
ramification indices ri |mi . In particular M-approximation is
satisfied if gcd(mi ,mj) = 1 for all i ̸= j and this is sharp for Pn.

The only case previously known were for curves, by work of
Christensen (2020) and Santens (2023).

Boaz Moerman M-points and adelic approximation on toric varieties



Introduction
M-points

M-approximation
M-approximation on toric varieties

Consequences: Darmon points

Corollary

The Darmon points on a smooth toric variety over a number field
satisfy M-approximation if and only if there exist no finite covers
Y → X of integral varieties only ramified over D1, . . . ,Dn with
ramification indices ri |mi . In particular M-approximation is
satisfied if gcd(mi ,mj) = 1 for all i ̸= j and this is sharp for Pn.

The only case previously known were for curves, by work of
Christensen (2020) and Santens (2023).

Boaz Moerman M-points and adelic approximation on toric varieties



Introduction
M-points

M-approximation
M-approximation on toric varieties

Proof idea in general

Then we construct the point P approximating the v -adic points by
letting the i-th coordinate of P be a product of powers of such
prime elements, and we use the
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Proof sketch

We sketch the proof that (X ,M) satisfies M-approximation off T
when K = Q, T = {∞} and NM = Zd .

Let p1, . . . , ps be distinct
primes and N be a positive integer. For every 1, . . . , s, let

Pi = (ui ,1p
vi ,1
i : · · · : ui ,np

vi,n
i ) ∈ Pn−1(Qpi ),

where ui ,j ∈ Z×
pi
.By multiplying everything (coordinate-wise) by

s∏
i=1

(p
−vi,1
i : · · · : p−vi,n

i ),

we can assume that Pi ∈ Gd
m(Zpi ).
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Proof sketch

Now choose m1, . . . ,ml ∈ M whose images generate Zd . These
(m1, . . . ,ml) give a surjective map Zl → Zd , and thus induce a
surjective map (Z×

pi
)l → (Z×

pi
)d . By combining this with Dirichlet’s

theorem on arithmetic progressions, we can construct such P
explicitly.
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Proof sketch (details)

To be precise: for each 1, . . . , s want Cm1,i , . . . ,Cml ,i ∈ Z×
pi

with

l∏
k=1

(C
mk,1

m1,i
, . . . ,C

mk,n

mk ,i
) = t(ui ,1, . . . , ui ,n),

for some t ∈ Z×
pi
. By the surjectivity, such Cmj ,i exist.

By Dirichlet’s
theorem on arithmetic progressions, we can find a prime Cmj with

Cmj ≡ Cmj ,i mod pNi . Now we can take P = (u1, · · · : un) with
ui =

∏l
k=1 C

mk,i
mk

, which finishes the proof.
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pi

with

l∏
k=1

(C
mk,1

m1,i
, . . . ,C

mk,n

mk ,i
) = t(ui ,1, . . . , ui ,n),

for some t ∈ Z×
pi
. By the surjectivity, such Cmj ,i exist.By Dirichlet’s

theorem on arithmetic progressions, we can find a prime Cmj with

Cmj ≡ Cmj ,i mod pNi . Now we can take P = (u1, · · · : un) with
ui =

∏l
k=1 C

mk,i
mk

, which finishes the proof.
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Proof idea in general: number fields

The proof for number fields in general proceeds similarly, where we
replace Dirichlet’s theorem on arithmetic progressions by the
following lemma.

Lemma (B.Moerman), 2024

Let K be a number field and for all v ∈ S let xv ∈ K×
v . Choose a

place v0 ∈ S .Then for every ϵ > 0 there exist infinitely many
(coprime) prime elements p ∈ OS with |p − xv |v < ϵ for all
v ∈ S \ {v0}.

We also have some limited control over |p − xv0 |v0 , which is
necessary for the first part of the theorem. This is a generalization
of Dirichlet’s theorem on arithmetic progressions, but it requires
more sophisticated tools than Chebotarev’s density theorem (if
K ̸= Q), as that gives little control over the infinite places.
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Proof idea in general: other fields

For global function fields, we prove an analogous result using
similar methods. Over function fields over an infinite field, we
prove a similar result using genericity arguments akin to Bertini’s
theorem/generic smoothness.
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