Adelic approximation of generalized integral points

Boaz Moerman

Utrecht University

29 August 2023

Boaz Moerman Adelic approximation of generalized integral points

For simplicity, we work over \mathbb{Q} and \mathbb{Z} , but the results work more generally over number fields and function fields of curves over any field. We denote $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

In number theory interested in equations mod p^n . Define valuation

$$v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.$$

We have $p^n | x$ iff $v_p(x) \ge n$. Induces absolute value

$$|a|_p := p^{-v_p(a)}.$$

Complete \mathbb{Q} with $|\cdot|_p$ to get \mathbb{Q}_p , which is a locally compact field. The closure of \mathbb{Z} is the ring

$$\mathbb{Z}_p = \{ a \in \mathbb{Q}_p \colon |a|_p \le 1 \}.$$

By definition, $\mathbb Z$ dense in $\mathbb Z_p,$ but by the Chinese remainder theorem we even have

Strong approximation theorem (weak form)

The diagonal embedding

$$\mathbb{Z} \hookrightarrow \prod_{p \text{ prime}} \mathbb{Z}_p$$

has dense image.

Main result generalizes strong approximation in 3 main ways:

- **2** Considering different spaces than \mathbb{A}^1 .
- **③** Restricting to subsets of \mathbb{Z} .

Points 1 & 2 have been studied extensively, but very little is known about point 3.

For simplicity restrict the field to \mathbb{Q} .

A natural class of varieties for this problem are split toric varieties. These resemble \mathbb{P}^n and have Cox coordinates generalizing the homogeneous coordinates.Examples include:

- Products of projective spaces.
- ② Hirzebruch surfaces H_d : which are a quotient like $\mathbb{P}^1 \times \mathbb{P}^1$, with instead the relation

$$(x_1: x_2: x_3: x_4) = (\lambda x_1: \mu x_2: \lambda x_3: \lambda^d \mu x_4).$$

Let X be a compact variety over \mathbb{Q} with model \mathcal{X} over \mathbb{Z} and choose divisors D_1, \ldots, D_n on X with closure $\mathcal{D}_1, \ldots, \mathcal{D}_n$ in \mathcal{X} . There are a lot of special subsets of rational points defined relative to these, such as

- integral points,
- Campana points and weak Campana points,
- Darmon points etc.

We introduce W-points as a common framework for these points.

For a prime p and $P \in (X \setminus D_i)(\mathbb{Q})$ we define the **multiplicity** at a divisor \mathcal{D}_i as the largest integer $N = n_p(P, \mathcal{D}_i)$ such that $P \mod p^N$ lies in $\mathcal{D}_i(\mathbb{Z}/p^N\mathbb{Z})$. If $P \in D_i(\mathbb{Q})$ we set $n_p(P, \mathcal{D}_i) = \infty$. Using this we define the multiplicity map

 $\operatorname{mult}_{p} \colon X(\mathbb{Q}_{p}) \to \overline{\mathbb{N}}^{n}$

 $P\mapsto (n_p(P,\mathcal{D}_1),\ldots,n_p(P,\mathcal{D}_n)).$

Given $\mathfrak{W} \subset \overline{\mathbb{N}}^n$ containing $\{0, \ldots, 0\}$ we set $\mathcal{W} = ((\mathcal{D}_1, \ldots, \mathcal{D}_n), \mathfrak{W})$ and we define the set of *p*-adic \mathcal{W} -points as

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}_p) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \},\$$

and the set of $\mathcal W\text{-}points$ over $\mathbb Z$ as

 $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \text{ for all primes } p \}.$

We take X to be a compact smooth split toric variety. We let D_1, \ldots, D_n be the torus-invariant prime divisors $D_i = \{x_i = 0\}$ (on \mathbb{P}^{n-1} : coordinate hyperplanes).

We can represent a point on a toric variety $X(\mathbb{Q})$ by its Cox coordinates $P = (a_1 : \cdots : a_n)$, corresponding to the D_i . By taking the coordinates in \mathbb{Z} in primitive form (for \mathbb{P}^{n-1} this is just $gcd(a_1, \ldots, a_n) = 1$) we have we have $a_i \in \mathbb{Z}$ and

$$\operatorname{mult}_p(P) = (v_p(a_1), \ldots, v_p(a_n)).$$

Examples of \mathcal{W} -points

• $\mathfrak{W} = \{0\}^k \times \overline{\mathbb{N}}^{n-k}$ gives the integral points with respect to D_1, \dots, D_k : $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = (\mathcal{X} \setminus \cup_{i=1}^k \mathcal{D}_i)(\mathbb{Z})$ $= \{(\pm 1 : \dots : \pm 1 : a_{k+1} : \dots : a_n)\}.$

• $\mathfrak{W} = \{(w_1, \ldots, w_n) : w_i = 0 \text{ or } w_i \ge m_i\}$ gives the **Campana** points

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{(a_1 : \cdots : a_n) : a_i \ m_i \text{-full}\}.$$

We say that \mathcal{X} satisfies *(integral)* \mathcal{W} -approximation if the embedding

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) \hookrightarrow \prod_{p \text{ prime}} (\mathcal{X},\mathcal{W})(\mathbb{Z}_p) \times X(\mathbb{R})$$

has dense image,

and say it satisfies (integral) $\mathcal{W}\text{-approximation}$ off ∞ if the embedding

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) \hookrightarrow \prod_{p \text{ prime}} (\mathcal{X}, \mathcal{W})(\mathbb{Z}_p)$$

has dense image. This generalizes strong approximation, which is when $(\mathcal{X}, \mathcal{W})(\mathbb{Z})$ are the integral points.

When is this satisfied? Consider the fan of X in \mathbb{Z}^d $(d = \dim X)$. Then we get a homomorphism

$$\phi \colon \mathbb{N}^n \to \mathbb{Z}^d$$

sending $e_i \mapsto u_i$, where u_i is the ray generator associated to D_i . (For \mathbb{P}^{n-1} we take $u_i = e_i$ if $i \le n-1$ and $u_n = -\sum_{i=1}^d e_i$.) Using this map, W generates a submonoid

$$N^+_W \subset \mathbb{Z}^d$$

and a subgroup

$$N_W \subset \mathbb{Z}^d$$
.

Theorem (B.M.,2023)

- **4** \mathcal{X} satisfies \mathcal{W} -approximation off ∞ if and only if $N_W = \mathbb{Z}^d$,
- 2 \mathcal{X} satisfies \mathcal{W} -approximation if and only if $N_W^+ = \mathbb{Z}^d$.

As N_W and N_W^+ are easy to compute, it is easy to decide whether W-approximation holds.

Corollary (B.M., 2023)

 ${\mathcal X}$ always satisfies ${\mathcal W}\text{-approximation}$ for Campana points and for squarefree points.

This generalizes the work of Nakahara-Streeter (2021).

Corollary

Strong approximation holds off ∞ with respect to D_1, \ldots, D_k if and only if $X \setminus \bigcup_{i=1}^k D_i$ is simply connected as a complex manifold. This comes from the isomorphism

$$\mathbb{Z}^d/N_W \cong \pi_1(X \setminus \cup_{i=1}^k D_i).$$

Corollary (B.M., 2023)

 \mathcal{W} -approximation holds for Darmon points if and only if there are no (nontrivial) finite covers $Y \to X$ ramified only over the D_i with ramification multiplicity $e_i | m_i$ at the D_i .

In particular: if $gcd(m_i, m_j) = 1$ for all $i \neq j$ then *W*-approximation holds for Darmon points, and if $X = \mathbb{P}^n$ then the converse also holds. (The above condition is equivalent to the associated root stack being simply connected.)

Example: if $X = \mathbb{P}^1$ and $m_1, m_2 = 2$, then \mathcal{X} does not satisfy \mathcal{W} -approximation, as 2 mod 5 is not of the form $\pm a^2 \mod 5$, but $(2:1) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_5)$ as $2 \in \mathbb{Z}_5^{\times}$.

If p_1, \ldots, p_r are primes and $P_i = (a_{p_i,1}, \ldots, a_{p_i,n}) \in (\mathcal{X}, \mathcal{W})(\mathbb{Z}_{p_i})$, we want to find $Q \in (\mathcal{X}, \mathcal{W})(\mathbb{Z})$ approximating each to order p_i^N . Write

$$Q' = \prod_{i=1}^{r} (p^{v_p(a_{p_i,1})}, \dots, p^{v_p(a_{p_i,n})}).$$

Then Q' has the right multiplicities for all primes p_i and has multiplicity 0 for all other primes. This shows we can assume all multiplicities are 0.

Let $w_1, \ldots, w_k \in \mathfrak{W}$ generate \mathbb{Z}^d . Then the linear map $\mathbb{Z}^k \to \mathbb{Z}^d$ is surjective, and thus the associated map

$$(\mathbb{Z}/p_i^N\mathbb{Z})^k o (\mathbb{Z}/p_i^N\mathbb{Z})^d$$

is as well. So at each prime p_i we can find a point $Q_i \in \mathcal{X}(\mathbb{Z})$ which satisfies the \mathcal{W} -condition at p_i . The only obstacle now is to lift these points modulo p_i^N to a \mathcal{W} -point Q over \mathbb{Z} . For all i Dirichlets theorem on arithmetic progressions gives infinitely many primes q_i which are 1 mod p_j^N and have any given residue class $q_i \mod p_i$. We use this to construct Q.

The results transfer verbatim to number fields, and after slight modification also for function fields of curves.