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Conventions

For simplicity, we work over Q and Z, but the results work more
generally over number fields and function fields of curves over any
field. We denote N = N ∪ {∞}.
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Many types of points

Let X be a compact variety over Q with integral model X over Z
and let D1, . . . ,Dn be divisors on X with Zariski closure
D1, . . . ,Dn. There are a lot of special subsets of rational points
defined relative to these, such as

integral points,

Campana points and weak Campana points,

Darmon points etc.

We introduce W -points as a common framework for these points.
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Multiplicity map

For a prime p and P ∈ (X \Di )(Q) we define the multiplicity at a
divisor Di as the largest integer N = np(P,Di ) such that
P mod pN lies in Di (Z/pNZ). If P ∈ Di (Q) we set np(P,Di ) = ∞.
Using this we define the multiplicity map

multp : X (Qp) → Nn

P 7→ (np(P,D1), . . . , np(P,Dn)).
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W-points

Given W ⊂ Nn
containing {0, . . . , 0} we set

W = ((D1, . . . ,Dn),W) and we define the set of p-adic W-points
as

(X ,W)(Zp) = {P ∈ X | multp(P) ∈ W },

and the set of W-points over Z as

(X ,W)(Z) = {P ∈ X | multp(P) ∈ W for all primes p}.

Boaz Moerman Approximation of generalized Campana points



Multiplicities on toric varieties

We take X to be a compact smooth split toric variety
(such as Pn−1), with integral model X induced by the fan. We let
D1, . . . ,Dn be the torus-invariant prime divisors
(on Pn−1: coordinate hyperplanes)
with ray generators ui ∈ Zd , where d = dimX .
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Multiplicities on toric varieties

We can represent a point on X (Q) by its Cox coordinates
P = (a1 : · · · : an), corresponding to the Di , and by scaling we can
assume that ai ∈ Z, and that for every prime p there exists a cone
σ such that p ∤ ai for all i with ui ̸∈ σ.
(For Pn−1 this is just gcd(a1, . . . , an) = 1.)
Then we have

multp(P) = (vp(a1), . . . , vp(an)).
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Examples of W-points

W = {0}k × Nn−k
gives the integral points with respect to

D1, . . . ,Dk :

(X ,W)(Z) = {(±1 : · · · : ±1 : ak+1 : · · · : an)}.

W = {0, 1}n gives ”squarefree” points
(X ,W)(Z) = {(a1 : · · · : an) : ai squarefree}.

Let m1, . . . ,mn ∈ N− {0}.
W = {(w1, . . . ,wn) : mi |wi} gives the Darmon points

(X ,W)(Z) = {(±am1
1 : · · · : ±amn

n )}.

W = {(w1, . . . ,wn) : wi = 0 or wi ≥ mi} gives the Campana
points

(X ,W)(Z) = {(a1 : · · · : an) : ai mi -full}.
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W-approximation

We say that X satisfies (integral) W-approximation if the
embedding

(X ,W)(Z) →
∏

p prime

(X ,W)(Zp)× X (R)

has dense image,
and say it satisfies (integral) W-approximation off ∞ if the
embedding

(X ,W)(Z) →
∏

p prime

(X ,W)(Zp)

has dense image. This generalizes strong approximation, which is
when (X ,W)(Z) are the integral points.
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W-approximation for toric varieties

When is this satisfied? Consider the fan of X in Zd (d = dimX ).
Then we get a homomorphism

Nn → Zd

sending ei 7→ ui , where ui is the ray generator associated to Di .
(For Pn−1 we take ui = ei if i ≤ n − 1(= d) and un = −

∑d
i=1 ei .)

Using this map, W generates a submonoid

N+
W ⊂ Zd

and a subgroup
NW ⊂ Zd .

Boaz Moerman Approximation of generalized Campana points



W-approximation for toric varieties

Theorem (B.M.,2023)

1 X satisfies W-approximation off ∞ if and only if NW = Zd ,

2 X satisfies W-approximation if and only if N+
W = Zd .

As NW and N+
W are easy to compute, it is easy to decide whether

W-approximation holds.
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Implications of the theorem

Corollary (B.M.,2023)

X always satisfies W-approximation for Campana points and for
squarefree points.

Corollary

Strong approximation holds off ∞ with respect to D1, . . . ,Dk if
and only if X \ ∪k

i=1Di is simply connected as a complex manifold.
This comes from the isomorphism

Zd/NW
∼= π1(X \ ∪k

i=1Di ).
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Corollary (B.M.,2023)

W-approximation holds for Darmon points if and only if there are
no (nontrivial) finite covers Y → X ramified only over the Di with
ramification multiplicity ei |mi at the Di .
In particular: if gcd(mi ,mj) = 1 for all i ̸= j then
W-approximation holds for Darmon points, and if X = Pn then the
converse also holds.

(The above condition is equivalent to the associated root stack
being simply connected.)

Example: if X = P1 and m1,m2 = 2, then X does not satisfy
W-approximation, as 2 mod 5 is not of the form ±a2 mod 5, but
(2 : 1) ∈ (X ,W)(Z5) as 2 ∈ Z×

5 .
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In general

The results transfer verbatim to number fields, and after slight
modification also for function fields of curves.
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