Approximation of generalized Campana points

Boaz Moerman

8 June 2023

Boaz Moerman Approximation of generalized Campana points

For simplicity, we work over \mathbb{Q} and \mathbb{Z} , but the results work more generally over number fields and function fields of curves over any field. We denote $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

Let X be a variety with integral model \mathcal{X} and let D_1, \ldots, D_n be divisors on X with Zariski closure $\mathcal{D}_1, \ldots, \mathcal{D}_n$. There are a lot of special subsets of rational points defined relative to these, such as

- integral points,
- Campana points and weak Campana points,
- Darmon points etc.

We introduce W-points as a common framework for these points.

For a prime p we define the multiplicity map

 $\operatorname{mult}_p \colon X(\mathbb{Q}_p) \to \overline{\mathbb{N}}^n$ $P \mapsto (n_p(P, \mathcal{D}_1), \dots, n_p(P, \mathcal{D}_n)).$ Given $\mathfrak{W} \subset \overline{\mathbb{N}}^n$ containing $\{0, \ldots, 0\}$ we set $\mathcal{W} = ((\mathcal{D}_1, \ldots, \mathcal{D}_n), \mathfrak{W})$ and we define the set of *p*-adic \mathcal{W} -points as

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}_p) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \},\$$

and the set of $\mathcal W\text{-}points$ over $\mathbb Z$ as

 $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{ P \in X \mid \mathsf{mult}_p(P) \in W \text{ for all primes } p \}.$

We take X to be a complete smooth split toric variety, with integral model \mathcal{X} induced by the fan. We let D_1, \ldots, D_n be the torus-invariant prime divisors (on projective space: coordinate hyperplanes).

We can represent a point P on $X(\mathbb{Q})$ by its Cox coordinates (a_1, \ldots, a_n) (corresponding to the D_i) and by scaling we can assume that $a_i \in \mathbb{Z}$, and that for every prime p there exists a cone σ such that $p \nmid a_i$ for all i not corresponding to the cone. Then we have

$$\operatorname{mult}_p(P) = (v_p(a_1), \ldots, v_p(a_n)).$$

Examples of \mathcal{W} -points

Let
$$m_1, \ldots, m_n \in \mathbb{N} - \{0\}$$

• $\mathfrak{W} = \{0, 1\}^n$ gives "squarefree" points
 $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{(a_1, \ldots, a_n): a_i \text{ squarefree}\}.$
• $\mathfrak{W} = \{(w_1, \ldots, w_n): m_i | w_i\}$ gives the Darmon points
 $(\mathcal{X}, \mathcal{W})(\mathbb{Z}) = \{(\pm a_1^{m_1}, \ldots, \pm a_n^{m_n})\}$

•
$$\mathfrak{W} = \{(w_1, \dots, w_n) : w_i = 0 \text{ or } w_i \ge m_i\}$$
 gives the Campana points

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) = \{(a_1,\ldots,a_n): a_i \ m_i \text{-full}\}.$$

Now we generalize strong approximation. We say that \mathcal{X} satisfies *(integral)* \mathcal{W} -approximation if the map

$$(\mathcal{X},\mathcal{W})(\mathbb{Z}) o \prod_{p \text{ prime}} (\mathcal{X},\mathcal{W})(\mathbb{Z}_p) imes X(\mathbb{R})$$

has dense image, and say it satisfies (integral) W-approximation off ∞ if the map

$$(\mathcal{X}, \mathcal{W})(\mathbb{Z}) \to \prod_{p \text{ prime}} (\mathcal{X}, \mathcal{W})(\mathbb{Z}_p).$$

This property implies that $(\mathcal{X}, \mathcal{W})(\mathbb{Z})$ is not thin.

When does this happen in the toric setup? Consider the fan of X in \mathbb{Z}^d , $d = \dim X$. Then we get a homomorphism

$$\mathbb{N}^n \to \mathbb{Z}^d$$

sending $e_i \mapsto n_i$, where n_i is the ray generator associated to D_i . (For \mathbb{P}^d we take $n_i = e_i$ if $i \leq d$ and $n_{i+1} = -\sum_{i=1}^d e_i$.) Using this map, W generates a submonoid

$$N_W^+ \subset \mathbb{Z}^d$$

and a subgroup

$$N_W \subset \mathbb{Z}^d$$
.

Theorem (B.M.)

- **Q** \mathcal{X} satisfies \mathcal{W} -approximation off ∞ if and only if $N_W = \mathbb{Z}^d$.
- **2** \mathcal{X} satisfies \mathcal{W} -approximation if and only if $N_W^+ = \mathbb{Z}^d$

Let W give the Darmon points as before and write Y for the associated stack. Then we have an isomorphism

$$\pi_1^{\acute{e}t}(Y_{\mathbb{C}})\cong \widehat{\mathbb{Z}^n/N_W}.$$

Together with the theorem this gives

Corollary (B.M.)

X satisfies \mathcal{W} -approximation off ∞ if and only if $Y_{\mathbb{C}}$ is simply connected. Furthermore, X satisfies \mathcal{W} -approximation if and only if furthermore all global sections of $Y_{\mathbb{C}}$ are constant.

In particular, if we take $m_i \in \{1, \infty\}$, we recover conditions for strong approximation for split toric varieties.

As an example, if $X = \mathbb{P}^n$, then $Y_{\mathbb{C}}$ is simply connected if and only if $gcd(m_i, m_j) = 1$ for all $i \neq j$.

Let W give the Campana points on (X, Δ) as before. We have

Corollary (B.M.)

X satisfies \mathcal{W} -approximation (off ∞) if and only if it is satisfied for $(X, \lfloor \Delta \rfloor)$. In particular it holds if $m_i \neq \infty$ for any *i*.

The results transfer verbatim to number fields, and after slight modification also for function fields of curves.