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Conventions

For simplicity, we work over Q and Z, but the results work more
generally over number fields and function fields of curves over any
field. We denote N = N ∪ {∞}.
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Many types of points

Let X be a variety with integral model X and let D1, . . . ,Dn be
divisors on X with Zariski closure D1, . . . ,Dn. There are a lot of
special subsets of rational points defined relative to these, such as

integral points,

Campana points and weak Campana points,

Darmon points etc.

We introduce W -points as a common framework for these points.
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Multiplicity map

For a prime p we define the multiplicity map

multp : X (Qp) → Nn

P 7→ (np(P,D1), . . . , np(P,Dn)).
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W-points

Given W ⊂ Nn
containing {0, . . . , 0} we set

W = ((D1, . . . ,Dn),W) and we define the set of p-adic W-points
as

(X ,W)(Zp) = {P ∈ X | multp(P) ∈ W },

and the set of W-points over Z as

(X ,W)(Z) = {P ∈ X | multp(P) ∈ W for all primes p}.
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Multiplicities on toric varieties

We take X to be a complete smooth split toric variety, with
integral model X induced by the fan. We let D1, . . . ,Dn be the
torus-invariant prime divisors (on projective space: coordinate
hyperplanes).
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Multiplicities on toric varieties

We can represent a point P on X (Q) by its Cox coordinates
(a1, . . . , an) (corresponding to the Di ) and by scaling we can
assume that ai ∈ Z, and that for every prime p there exists a cone
σ such that p ∤ ai for all i not corresponding to the cone. Then we
have

multp(P) = (vp(a1), . . . , vp(an)).
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Examples of W-points

Let m1, . . . ,mn ∈ N− {0}
W = {0, 1}n gives ”squarefree” points
(X ,W)(Z) = {(a1, . . . , an) : ai squarefree}.
W = {(w1, . . . ,wn) : mi |wi} gives the Darmon points

(X ,W)(Z) = {(±am1
1 , . . . ,±amn

n )}

W = {(w1, . . . ,wn) : wi = 0 or wi ≥ mi} gives the Campana
points

(X ,W)(Z) = {(a1, . . . , an) : ai mi -full}.
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W-approximation

Now we generalize strong approximation. We say that X satisfies
(integral) W-approximation if the map

(X ,W)(Z) →
∏

p prime

(X ,W)(Zp)× X (R)

has dense image,
and say it satisfies (integral) W-approximation off ∞ if the map

(X ,W)(Z) →
∏

p prime

(X ,W)(Zp).

This property implies that (X ,W)(Z) is not thin.
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W-approximation for toric varieties

When does this happen in the toric setup? Consider the fan of X
in Zd , d = dimX . Then we get a homomorphism

Nn → Zd

sending ei 7→ ni , where ni is the ray generator associated to Di .
(For Pd we take ni = ei if i ≤ d and ni+1 = −

∑d
i=1 ei .) Using

this map, W generates a submonoid

N+
W ⊂ Zd

and a subgroup
NW ⊂ Zd .
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W-approximation for toric varieties

Theorem (B.M.)

1 X satisfies W-approximation off ∞ if and only if NW = Zd .

2 X satisfies W-approximation if and only if N+
W = Zd
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W-approx for Darmon points

Let W give the Darmon points as before and write Y for the
associated stack. Then we have an isomorphism

πét
1 (YC) ∼= Ẑn/NW .

Together with the theorem this gives

Corollary (B.M.)

X satisfies W-approximation off ∞ if and only if YC is simply
connected. Furthermore, X satisfies W-approximation if and only
if furthermore all global sections of YC are constant.

In particular, if we take mi ∈ {1,∞}, we recover conditions for
strong approximation for split toric varieties.
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W-approx for Darmon points

As an example, if X = Pn, then YC is simply connected if and only
if gcd(mi ,mj) = 1 for all i ̸= j .
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W-approx for Campana points

Let W give the Campana points on (X ,∆) as before. We have

Corollary (B.M.)

X satisfies W-approximation (off ∞) if and only if it is satisfied for
(X , ⌊∆⌋). In particular it holds if mi ̸= ∞ for any i .
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In general

The results transfer verbatim to number fields, and after slight
modification also for function fields of curves.
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