Approximation of generalized Campana points

Boaz Moerman

13 April 2023

Boaz Moerman Approximation of generalized Campana points

The *p*-adics

In number theory interested in equations mod p^n . Define **valuation**

$$v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.$$

We have $p^n | x$ iff $v_p(x) \ge n$. Induces absolute value

$$|a|_p := p^{-v_p(a)}.$$

Complete \mathbb{Q} with $|\cdot|_p$ to get \mathbb{Q}_p , which is a locally compact field. The closure of \mathbb{Z} is the ring

$$\mathbb{Z}_{p} = \{ a \in \mathbb{Q}_{p} \colon |a|_{p} \leq 1 \}.$$

The *p*-adics

Can write for $x \in \mathbb{Q}_p$

$$x = \sum_{i=k}^{\infty} a_i p^i, \quad k \in \mathbb{Z}, a_i \in \{0, \dots, p-1\},$$

with $x \in \mathbb{Z}_p$ if $k \ge 0$. (So we have $\mathbb{Q}_p = \mathbb{Z}_p[\frac{1}{p}]$.)

Strong approximation

By definition, \mathbb{Z} dense in \mathbb{Z}_p . By the Chinese remainder theorem, if $p \neq q$ primes, then

$$x\equiv a mod p^n, \quad x\equiv b mod q^m$$

is equivalent to

$$x \equiv c \mod p^n q^m$$

for some specific c. Therefore the diagonal map

$$\mathbb{Z} \to \mathbb{Z}_p \times \mathbb{Z}_q$$
$$x \mapsto (x, x)$$

has dense image.

Strong approximation

In the same way prove

Strong approximation theorem (weak form)

The diagonal embedding

$$\mathbb{Z} \to \prod_{p \text{ prime}} \mathbb{Z}_p$$

has dense image.

Generalizations of strong approximation

Main result generalizes strong approximation in 3 main ways:

- $\textcircled{ Generalizing } \mathbb{Q} \text{ to different fields.}$
- Considering different spaces.
- **③** Restricting to subsets of \mathbb{Z} .

Points 1 & 2 have been studied extensively, but very little is known about point 3.

For simplicity restrict the field to ${\ensuremath{\mathbb Q}}$ and the space to projective space.

Projective space

Let K be a field, we define **projective space** of dimension n as

$$\mathbb{P}^n(\mathcal{K}) = (\mathcal{K}^{n+1} \setminus \{0, \dots, 0\})/\mathcal{K}^{\times}.$$

So in coordinates: $(\lambda a_0 : \dots : \lambda a_n) = (a_0 : \dots : a_n)$. If K has a topology, then $\mathbb{P}^n(K)$ is given the quotient topology.

Multiplicities

Any $P \in \mathbb{P}^n(\mathbb{Q})$ can be given integer, coprime coordinates. Similarly $P \in \mathbb{P}^n(\mathbb{Q}_p)$ can be written as $(a_0 : \cdots : a_n)$ with $a_i \in \mathbb{Z}_p$ and $v_p(a_i) = 0$ for some *i*. As this is unique up to \mathbb{Z}_p^{\times} , get a map

mult:
$$\mathbb{P}^{n}(\mathbb{Q}_{p}) \to \overline{\mathbb{N}}^{n+1}$$

 $(a_{0}:\cdots:a_{n}) \mapsto (v_{p}(a_{0}),\ldots,v_{p}(a_{n})).$

Here $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}.$

W-points

For a subset $W \subset \overline{\mathbb{N}}^{n+1}$ containing $\{(0, \ldots, 0)\}$ we define the subspace of *p*-adic *W*-points

$$(\mathbb{P}^n, W)(\mathbb{Z}_p) := \{ P \in \mathbb{P}^n(\mathbb{Q}_p) \colon \mathsf{mult}_p(P) \in W \},\$$

and the set of W-points over \mathbb{Z}

 $(\mathbb{P}^n, W)(\mathbb{Z}) := \{ P \in \mathbb{P}^n(\mathbb{Q}) \colon \operatorname{mult}_p(P) \in W \text{ for all primes } p \}.$

For example, if $W = \{(0, \ldots, 0)\}$, then $(\mathbb{P}^n, W)(\mathbb{Z}) = \{(\pm 1 : \cdots : \pm 1)\}$ and $(\mathbb{P}^n, W)(\mathbb{Z}_p) = \{(\mathbb{Z}_p^{\times} : \cdots : \mathbb{Z}_p^{\times})\}$

Examples of *W*-points

•
$$n = 1$$
, $W = \overline{\mathbb{N}} \times \{0\}$ give
 $(\mathbb{P}^1, W)(\mathbb{Z}_p) = \{(a:1): a \in \mathbb{Z}_p\} \cong \mathbb{Z}_p \text{ and similarly for } \mathbb{Z}.$

•
$$W = \{0, 1\}^{n+1}$$
 gives
 $(\mathbb{P}^n, W)(\mathbb{Z}) = \{(a_0 : \cdots : a_n) : a_i \text{ squarefree}\}.$

Examples of W-points

Let m_0, \ldots, m_n be positive integers. Take coordinates to be coprime.

• If
$$W = \{(w_0, ..., w_n): m_i | w_i\}$$
, then

$$(\mathbb{P}^n, W)(\mathbb{Z}) = \{(\pm a_0^{m_0} : \cdots : \pm a_n^{m_n})\}$$

are the Darmon points.

• If
$$W = \{(w_0, \ldots, w_n): w_i = 0 \text{ or } w_i \geq m_i\}$$
, then

$$(\mathbb{P}^n, W)(\mathbb{Z}) = \{(a_0 : \cdots : a_n) : a_i \ m_i \text{-full}\}$$

are the Campana points.

(An integer *a* is *m*-full if p|a implies $p^m|a$.)

\mathbb{P}^n satisfies *W*-approximation if

$$(\mathbb{P}^n,W)(\mathbb{Z}) o \prod_{p \text{ prime}} (\mathbb{P}^n,W)(\mathbb{Z}_p) imes \mathbb{P}^n(\mathbb{R})$$

has dense image.

 \mathbb{P}^n satisfies *W*-approximation off \mathbb{R} if

$$(\mathbb{P}^n, W)(\mathbb{Z}) \to \prod_{p \text{ prime}} (\mathbb{P}^n, W)(\mathbb{Z}_p)$$

has dense image.

To understand when this holds for $W \subset \mathbb{N}^{n+1}$, define linear map

$$\phi\colon \mathbb{N}^{n+1}\to \mathbb{Z}^n$$

by

$$e_i\mapsto egin{cases} e_i& ext{for }i>0\ -(e_1+\dots+e_n)& ext{for }i=0. \end{cases}$$

Set
$$W' = \{(w_0, \ldots, w_n) \in W : w_i = 0 \text{ for some } i\}.$$

Theorem

 \mathbb{P}^n satisfies *W*-approximation off \mathbb{R} if and only if the integral linear span of $\phi(W')$ is \mathbb{Z}^n .

Furthermore \mathbb{P}^n satisfies *W*-approximation if and only if the integer coefficients in the linear combinations can be chosen nonnegative.

Corollary

 \mathbb{P}^n always satisfies *W*-approximation for Campana points.

Corollary

 \mathbb{P}^n satisfies *W*-approximation for Darmon points if and only if $gcd(m_0, \ldots, m_n) = 1$. (We recall $W = \{(w_0, \ldots, w_n) : m_i | w_i\}$)

Example: For Darmon points with $m_0 = 2$, $m_1 = 3$ this gives: for primes p_1, \ldots, p_k and $Q_i = (c_i : d_i) \in \mathbb{P}^1(\mathbb{Z}/p_i\mathbb{Z})$ and $Q = (c : d) \in \mathbb{P}^1(\mathbb{R})$, can find $a, b \in \mathbb{Z}$ such that $P = (a^2 : b^3)$ reduces to Q_i and approximates Q well.

Example: For Darmon points with $m_0 = m_1 = 2$ we have that *W*-approximation (off \mathbb{R}) is not satisfied since 2 mod 5 is not of the form $\pm a^2 \mod 5$, so no *W*-point reduces to $(2:1) \mod 5$.

Example: taking $W = \mathbb{N} \times \{0\}$ gives original strong approximation theorem. $(\mathbb{Z} \to \prod_p \mathbb{Z}_p \text{ dense.})$

The full result is much more general, and works over toric varieties and number fields, as well as function fields.