Approximation of generalized Campana points

Boaz Moerman

13 April 2023

Boaz Moerman Approximation of generalized Campana points

Boaz Moerman [Approximation of generalized Campana points](#page-0-1)

The p-adics

In number theory interested in equations mod p^n . Define valuation

$$
v_p(p^n \cdot \frac{a}{b}) := n \text{ if } p \nmid a, b, \quad v_p(0) = \infty.
$$

We have $p^n|x$ iff $v_p(x)\geq n.$ Induces absolute value

$$
|a|_p:=p^{-\nu_p(a)}.
$$

Complete $\mathbb Q$ with $|\cdot|_p$ to get $\mathbb Q_p$, which is a locally compact field. The closure of $\mathbb Z$ is the ring

$$
\mathbb{Z}_p = \{a \in \mathbb{Q}_p \colon |a|_p \leq 1\}.
$$

The p-adics

Can write for $x \in \mathbb{Q}_p$

$$
x=\sum_{i=k}^\infty a_i p^i, \quad k\in\mathbb{Z}, a_i\in\{0,\ldots,p-1\},\
$$

with $x\in\mathbb{Z}_p$ if $k\geq 0$. (So we have $\mathbb{Q}_p=\mathbb{Z}_p[\frac{1}{p}]$ $\frac{1}{p}$.)

Strong approximation

By definition, $\mathbb Z$ dense in $\mathbb Z_p$. By the Chinese remainder theorem, if $p \neq q$ primes, then

$$
x \equiv a \bmod p^n, \quad x \equiv b \bmod q^m
$$

is equivalent to

$$
x \equiv c \bmod p^n q^m
$$

for some specific c. Therefore the diagonal map

$$
\mathbb{Z} \to \mathbb{Z}_p \times \mathbb{Z}_q
$$

$$
x \mapsto (x, x)
$$

has dense image.

Strong approximation

In the same way prove

Strong approximation theorem (weak form)

The diagonal embedding

$$
\mathbb{Z} \to \prod_{\mathsf{p} \text{ prime}} \mathbb{Z}_{\mathsf{p}}
$$

has dense image.

Generalizations of strong approximation

Main result generalizes strong approximation in 3 main ways:

- \bullet Generalizing $\mathbb Q$ to different fields.
- **2** Considering different spaces.
- \bullet Restricting to subsets of \mathbb{Z} .

Points 1 & 2 have been studied extensively, but very little is known about point 3.

For simplicity restrict the field to $\mathbb O$ and the space to projective space.

Projective space

Let K be a field, we define **projective space** of dimension n as

$$
\mathbb{P}^n(K)=(K^{n+1}\setminus\{0,\ldots,0\})/K^{\times}.
$$

So in coordinates: $(\lambda a_0 : \cdots : \lambda a_n) = (a_0 : \cdots : a_n)$. If K has a topology, then $\mathbb{P}^n(K)$ is given the quotient topology.

Multiplicities

Any $P \in \mathbb{P}^n(\mathbb{Q})$ can be given integer, coprime coordinates. Similarly $P \in \mathbb{P}^n(\mathbb{Q}_p)$ can be written as $(a_0 : \cdots : a_n)$ with $a_i \in \mathbb{Z}_p$ and $v_p(a_i) = 0$ for some *i*. As this is unique up to \mathbb{Z}_p^\times , get a map

mult:
$$
\mathbb{P}^n(\mathbb{Q}_p) \to \overline{\mathbb{N}}^{n+1}
$$

\n $(a_0 : \cdots : a_n) \mapsto (v_p(a_0), \ldots, v_p(a_n)).$

Here $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}.$

W -points

For a subset $W \subset \overline{\mathbb{N}}^{n+1}$ containing $\{(0,\ldots,0)\}$ we define the subspace of p -adic W -points

$$
(\mathbb{P}^n, W)(\mathbb{Z}_p) := \{ P \in \mathbb{P}^n(\mathbb{Q}_p) \colon \operatorname{mult}_p(P) \in W \},
$$

and the set of W-points over $\mathbb Z$

 $(\mathbb{P}^n, W)(\mathbb{Z}) := \{ P \in \mathbb{P}^n(\mathbb{Q}) : \text{ mult}_p(P) \in W \text{ for all primes } p \}.$

For example, if $W = \{(0, \ldots, 0)\}\,$, then $(\mathbb{P}^n, W)(\mathbb{Z}) = \{ (\pm 1 : \cdots : \pm 1) \}$ and $(\mathbb{P}^n, W)(\mathbb{Z}_p) = \{(\mathbb{Z}_p^{\times} : \cdots : \mathbb{Z}_p^{\times})\}$

Examples of W-points

\n- •
$$
n = 1
$$
, $W = \overline{\mathbb{N}} \times \{0\}$ give $(\mathbb{P}^1, W)(\mathbb{Z}_p) = \{(a : 1) : a \in \mathbb{Z}_p\} \cong \mathbb{Z}_p$ and similarly for \mathbb{Z} .
\n

•
$$
W = \{0, 1\}^{n+1}
$$
 gives
\n $(\mathbb{P}^n, W)(\mathbb{Z}) = \{(a_0 : \cdots : a_n) : a_i \text{ squarefree}\}.$

Examples of W-points

Let m_0, \ldots, m_n be positive integers. Take coordinates to be coprime.

• If
$$
W = \{(w_0, ..., w_n): m_i | w_i\}
$$
, then

$$
(\mathbb{P}^n, W)(\mathbb{Z}) = \{(\pm a_0^{m_0} : \cdots : \pm a_n^{m_n})\}
$$

are the Darmon points.

• If
$$
W = \{(w_0, ..., w_n): w_i = 0 \text{ or } w_i \ge m_i\}
$$
, then

$$
(\mathbb{P}^n, W)(\mathbb{Z}) = \{ (a_0 : \cdots : a_n) : a_i \ m_i\text{-full} \}
$$

are the Campana points.

(An integer *a* is *m*-full if $p|a$ implies $p^m|a$.)

W-approximation

\mathbb{P}^n satisfies $\mathcal W$ -approximation if

$$
(\mathbb{P}^n,W)(\mathbb{Z})\to\prod_{\mathsf{p \ prime}}(\mathbb{P}^n,W)(\mathbb{Z}_\mathsf{p})\times\mathbb{P}^n(\mathbb{R})
$$

has dense image.

 \mathbb{P}^n satisfies W -a<mark>pproximation off</mark> $\mathbb R$ if

$$
(\mathbb{P}^n, W)(\mathbb{Z}) \to \prod_{\mathcal{P} \text{ prime}} (\mathbb{P}^n, W)(\mathbb{Z}_\mathcal{P})
$$

has dense image.

To understand when this holds for $W\subset \mathbb{N}^{n+1}$, define linear map

 $\phi\colon \mathbb{N}^{n+1}\to \mathbb{Z}^n$

by

$$
e_i \mapsto \begin{cases} e_i & \text{for } i > 0\\ -(e_1 + \cdots + e_n) & \text{for } i = 0. \end{cases}
$$

W -approximation

Set
$$
W' = \{(w_0, ..., w_n) \in W : w_i = 0 \text{ for some } i\}.
$$

Theorem

 \mathbb{P}^n satisfies W -approximation off $\mathbb R$ if and only if the integral linear span of $\phi(W')$ is \mathbb{Z}^n .

Furthermore \mathbb{P}^n satisfies W-approximation if and only if the integer coefficients in the linear combinations can be chosen nonnegative.

W -approximation

Corollary

 \mathbb{P}^n always satisfies W-approximation for Campana points.

Corollary

 \mathbb{P}^n satisfies W -approximation for Darmon points if and only if $\gcd(m_0, \ldots, m_n) = 1$. (We recall $W = \{(w_0, \ldots, w_n) : m_i|w_i\})$

Example: For Darmon points with $m_0 = 2$, $m_1 = 3$ this gives: for primes p_1,\ldots,p_k and $Q_i=(c_i:d_i)\in \mathbb{P}^1(\mathbb{Z}/p_i\mathbb{Z})$ and $Q = (c:d) \in \mathbb{P}^1(\mathbb{R})$, can find $a, b \in \mathbb{Z}$ such that $P = (a^2 : b^3)$ reduces to Q_i and approximates Q well.

W -approximation

Example: For Darmon points with $m_0 = m_1 = 2$ we have that W-approximation (off \mathbb{R}) is not satisfied since 2 mod 5 is not of the form $\pm a^2$ mod 5, so no W -point reduces to $(2:1)$ modulo 5.

Example: taking $W = N \times \{0\}$ gives original strong approximation theorem. $(\mathbb{Z} \to \prod_p \mathbb{Z}_p$ dense.)

The full result is much more general, and works over toric varieties and number fields, as well as function fields.